Ремонт стен Деревянные дома Ремонт квартир Инженерные сети Натяжные потолки Строительство Архитектура и строительство
Рекомендации по проектированию наружных и внутренних стен. 1. ОБЩИЕ ПОЛОЖЕНИЯ. 1.1. Настоящие рекомендации содержат основные указания по применению,проектированию и возведению стен жилых,общественных и промышленных зданий из пустотно-поризованных камней 2NF пластического прессования,выпускаемых
 Рекомендации по проектированию наружных и внутренних стен
Ремонт квартир, офисов, отделка коттеджей. Какая доска объявлений где можно разместить объявление бесплатно? На нашем сайте объявления размещают частные лица и организации. Здесь Вы найдёте объявления на тему: продажа оборудования, грузоперевозки, ареда курортной недвижимости, ремонт бытовой техники, услуги строителей, деловые услуги и многое другое. Мы стараемся предоставлять пользователям
 Ремонт квартир, офисов, отделка коттеджей
Расчет количества и стоимости пеноблоков (газоблоков. Времена, когда стены дома возводились из кирпича или бетона, остались далеко в прошлом. Сейчас появилось много других материалов, которые превосходят предыдущие по теплотехническим свойствам и практически не уступают по прочности. Например, пеноблоки и газоблоки (пенобетон и газосиликат. Если Вы хотите использовать данные материалы для
 Расчет количества и стоимости пеноблоков (газоблоков)
Логин:   
Пароль: 

Огнестойкость строительных конструкций

 admin    53    20.02.17

Огнестойкость строительных конструкцийОгнестойкость строительных конструкций.



Строительные нормы и правила. Пожарная безопасность зданий и сооружений. СНиП 21-01-97. М. Госстрой России, 1997г. 15 с.



Романенков И.Г. Левитес Ф.А. Огнезащита строительных конструкций. М. Стройиздат, 1991. 320 с.



Страхов В.Л. Крутов А.М. Давыдкин Н.Ф. Огнезащита строительных конструкций / Под ред. Ю.А.Кошмарова. М. ТИМР, 2000г. 433 с.



В.В. Павловский, В.Д.Иващенко. Огнезащита строительных конструкций КНАУФ-суперлистами (ГВЛ). Строительные материалы 6/2002, стр. 19-21.



В.Л.Страхов, А.Н.Гаращенко. Огнезащита строительных конструкций:современные средства и методы оптимального проектирования. /Строительные материалы 6/2002, стр. 2-5.



W. Rybczynski. What We Learned About Tall Buildings from the World Trade Center Collapse. DISCOVER Vol. 23 No. 10 (October 2002.



При подготовке статьи были также использованы материалы следующих Интернет-сайтов.



В.П.Филимонов Производственно-технологическая компания А+В.



Потенциальная пожароопасность зданий и сооружений определяется количеством и свойствами материалов, находящихся в них, а также, способностью конструкций сопротивляться воздействию пожара в течение определенного времени и зависит от свойств материалов строительных конструкций, из которых они выполнены. Практика показывает, что продолжительность пожаров может колебаться в значительных пределах, однако в большинстве случаев не превышает 2-3 часов. Данные о продолжительности и температурах на реальных пожарах были положены в основу температурных режимов для испытаний строительных конструкций на огнестойкость. В 1966 г. Международной организацией по стандартизации была рекомендована стандартная температурная кривая, которая принята в большинстве стран мира в качестве температурного режима для испытаний строительных конструкций на огнестойкость и регламентирована Строительными нормами и правилами (СНиП), отраслевыми стандартами и Нормами пожарной безопасности (НПБ). В последние годы российскими учеными Болодяном И.А. Кошмаровым Ю.А. Молчадским И.С. Страховым В.Л. Давыдкиным Н.Ф. и другими проведены теоретические и экспериментальные исследования процессов горения в условиях пожаров. Эти исследования позволили с достаточной для практических целей точностью прогнозировать процесс развития пожара в зависимости от особенностей воздухообмена в помещении, количества и вида пожарной нагрузки, под которой подразумеваются находящиеся в помещении горючие материалы, а также теплотехнических характеристик материалов ограждающих конструкций помещения, определяющих их огнестойкость. [1,2.



Огнестойкость конструкций, под которой понимается способность строительной конструкции сопротивляться воздействию высокой температуры в условиях пожара и при этом сохранять свои обычные эксплуатационные функции, относится к числу основных характеристик конструкций. Мерой огнестойкости конструкций является предел огнестойкости, который определяется временем в часах от начала испытаний на огнестойкость, в течение которого конструкция теряет свою несущую, ограждающую способность или целостность.



При проектировании зданий и сооружений требуемая огнестойкость строительных конструкций достигается за счет выбора соответствующих материалов, конструктивных решений и применением огнезащиты. Практика показывает, что применение огнезащиты, является наиболее экономичным путем достижения требуемой огнестойкости, однако применение тех или иных технических решений и материалов для огнезащиты определяется типами материалов, из которых выполнены те или иные строительные конструкции. Традиционно в строительстве широко применяются каменные, бетонные и железобетонные, металлические и деревянные конструкции.



Огнестойкость строительных конструкций.



Каменные конструкции имеют высокую естественную огнестойкость, которая определяется их высокими теплофизическими свойствами и массивностью. Например, в условиях пожара кирпичные конструкции удовлетворительно выдерживают нагревание до 900оС, практически не снижая своей прочности и не обнаруживая признаков разрушения, то есть в большинстве случаев они не нуждаются в дополнительной огнезащите.



Бетонные и железобетонные конструкции, благодаря сравнительно небольшой теплопроводности бетона, достаточно хорошо сопротивляются воздействию пожара, однако ввиду того, что современные железобетонные конструкции, как правило, выполняются тонкостенными и пустотными без монолитной связи с другими элементами здания, их способность выполнять свои функции ограничена одним часом, а иногда и менее того. Предел огнестойкости железобетонных конструкций зависит от размеров ее сечения, толщины защитного слоя, вида, количества и диаметра арматуры, класса бетона, вида заполнителя, нагрузки на конструкцию, схемы опор и влажности бетона в условиях эксплуатации здания. Наибольшей огнестойкостью обладает бетон с влажностью около 3,5%, однако увлажненные бетоны с плотностью выше 1200 кг/м3 даже при кратковременном действии пожара могут взрываться, что может привести к быстрому разрушению конструкции. При одних и тех же конструктивных параметрах предел огнестойкости балок меньше, чем плит, так как при пожаре балки обогреваются с трех сторон, а плиты только с двух. Плиты, опирающиеся по контуру, имеют предел огнестойкости значительно выше, чем плиты, опирающиеся на две стороны. Выпускаемые заводами крупнопустотные предварительно напряженные плиты с защитным слоем бетона 20 мм и стержневой арматурой из стали класса А-III имеют предел огнестойкости до 1 ч. Плиты и панели сплошного сечения из обычного железобетона при толщине защитного слоя 10 мм имеют пределы огнестойкости 1 час при использовании арматурной стали класса А-III. В случае подземных сооружений, в которых бетон, как правило, имеет повышенную влажность, увеличение толщины защитного слоя бетона может не обеспечить желаемых результатов или даже привести к обратным результатам, ввиду высокой вероятности взрывного разрушения бетона во время пожара.



Для расширения пределов огнестойкости бетона и железобетона могут быть использованы огнезащитные плиты на основе минеральных волокон, керамзита, вермикулита и перлита, обмазки, штукатурки и вспучивающиеся краски.



Металлические конструкции, то есть конструкции из стали, чугуна и алюминиевых сплавов значительно легче и удобнее в монтаже, чем равные им по несущей способности железобетонные конструкции, однако ввиду высокой теплопроводности металла и относительно невысокой критической температуре, они имеют предел огнестойкости не более 15 минут. Повышение предела огнестойкости металлических конструкций до требуемого уровня достигается за счет применения огнезащиты. В строительной практике традиционным и наиболее распространенным способом зашиты стальных конструкций от огня, является их облицовка несгораемыми строительными материалами или оштукатуривание. Например, облицовка стальных колонн в полкирпича позволяет получить предел огнестойкости до 5 часов. Оштукатуривание колонн песчано-цементной штукатуркой по металлический сетке повышает предел огнестойкости до 45 минут. В случае же увеличения слоя штукатурки до 50 мм, предел огнестойкости может быть повышен до 2 часов. Для повышения предела огнестойкости находят применение керамзитовые, асбоцементные, гипсовые и минерально-волокнистые плиты, позволяющие получит предел огнезащиты 2ч и более, а также штукатурки, обмазки и вспучивающиеся краски. Значительно сложнее защитить от воздействия пожара стальные балки и фермы, так как облицовка таких конструкций плитными материалами вызывает значительные трудности. Для этих целей предпочтительнее применять штукатурки, обмазки, в частности, вспучивающиеся обмазки на основе жидкого стекла, и вспучивающиеся краски.[2.



Деревянные конструкции находят широкое применение в строительстве, однако горючесть дерева является серьезным недостатком, ограничивающим применение древесины в строительстве. Защитить древесину от огня можно путем ее пропитки водными растворами антипиренов или путем облицовки поверхности древесины негорючими плитными материалами и защитными покрытиями. В качестве облицовочных огнезащитных материалов используются гипсокартонные листы, гипсоволокнистые плиты, известково-алебастровые и известково-цементные обмазки и штукатурки, наносимые непосредственно на древесину или поверх арматурной металлической сетки. В последнее время для огнезащиты дерева стали широко применяться огнезащитные вспучивающиеся краски.



С учетом вышесказанного, повышение огнестойкости особенно актуально для металлических и деревянных конструкций, в огнезащите нуждаются также железобетонные конструкции высотных и подземных сооружений.



Таким образом, в самом общем виде методы огнезащиты строительных конструкций, состоят.



в обкладке кирпичом и плитами, оштукатуривании и бетонировании элементов конструкций.



в облицовке плитными материалами или установке огнезащитных экранов.



в нанесении непосредственно на поверхность конструкции покрытий (окраска, обмазка и напыление.



в комбинировании названных выше способов, их рациональном сочетании и применении некоторых других конструктивных решений.



Все технологии огнезащиты по способу нанесения условно можно разделить на сухие и мокрые. Каждая из технологий имеет свои достоинства и недостатки. Материалы для сухой технологии нанесения могут иметь аналоги среди материалов для мокрого нанесения. Например, вермикулитовые плиты и вермикулито-цементные штукатурки, минераловатные плиты и штукатурки на основе минеральной ваты, с точки зрения их защитных свойств являются близкими аналогами.



К достоинствам сухих технологий огнезащиты можно отнести возможность выполнения работ в любое время года, а также в условиях, когда по каким либо технологическим или иным причинам применение мокрых технологий является недопустимым. Вместе с тем сухие технологии являются более трудоемкими, а выполнение огнезащиты на конструкциях сложной пространственной формы, например, балках и фермах является трудно решаемой технологической задачей. Некоторые материалы лишь условно могут быть отнесены к сухим, например, плитные или рулонные материалы, могут крепиться мастиками или клеями, либо комбинированным мокро-сухим способом и, впоследствии, оштукатуриваться перед чистовой отделкой.[3.



К числу недорогих и широко применяемых листовых огнезащитных материалов можно отнести гипсокартонные и гипсоволокнистые плиты. Они состоят из слоя гипса или гипса с волокнистым наполнителем и, как правило, покрыты с двух сторон картоном толщиной 0,5-0,7 мм. В качестве наполнителя наиболее часто используются целлюлоза и рубленное вискозное или другое синтетическое волокно в количестве 1-3% по массе. Лучшей конструктивной прочностью и огнестойкостью обладают плиты с волокном в качестве наполнителя, так как при тепловом воздействии происходит частичная карбонизация волокна, то есть превращение целлюлозы или вискозы в углеродное волокно, и оно в условиях пожара продолжает частично выполнять свои армирующие функции.[4.



Обкладка кирпичом, бетонирование и оштукатуривание также широко используются для огнезащиты в строительстве. Вместе с тем следует отметить, что эти конструктивные способы огнезащиты являются мокрыми и могут выполняться, как правило, в теплое время года. Обкладка кирпичом является трудоемким и медленным процессом и может быть рекомендована только при выполнении малых объемов огнезащитных работ. Наиболее технологичным и все более широко применяемым процессом является оштукатуривание защищаемых конструкций методом торкретирования. Торкретирование позволяет создавать огнезащитные покрытия, точно повторяющие форму защищаемой строительной конструкции. Покрытия, создаваемые методом торкретирования могут быть подвергнуты финишной обработке и окрашены для придания им атмосферо- и водостойкости, а также стойкости к агрессивным средам. Как показывает практика, бригада из двух человек при использовании штукатурного агрегата сухого или мокрого торкретирования может нанести за смену до 300 квадратных метров огнезащитного покрытия.



В Европе для мокрого торкретирования хорошо зарекомендовали штукатурные машины, производства фирм: M-Tec (M3, Duo-Mix), Германия; PFT, (модели G4, G4, G5), Германия; Putzmeister (модели M25, M35), Германия. В настоящее время проходит промышленные испытания штукатурный агрегат МАШ-2 Волковысского завода строительных машин и агрегатов (Белоруссия.



Для сухого торкретирования могут быть рекомендованы штукатурные агрегаты фирмы Projiso (модели ISO-40 и ISO-Minijet), Франция и фирмы Outils Diamantes Machines (модели Eole B380 и Eole S220), Франция.



©2015-2017 Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.

(голосов:0)
Похожие статьи
Огнезащита строительных металлических конструкций
Огнезащита строительных металлических конструкций. Руководитель испытательного центра ТЕСТ. ...
Определение пределов огнестойкости конструкций в строительстве
Определение пределов огнестойкости конструкций в строительстве. Строительные нормативы...
Пожарное оборудование
Пожарное оборудование. Пожарно-техническая классификация строительных материалов, конструкций,...
Предел огнестойкости строительных конструкций таблица сп
Предел огнестойкости строительных конструкций таблица сп. Более подробная информация находится...
Мосалков И
Огнестойкость строительных конструкций Год. 2001 Автор. Мосалков И.Л. Издательство. СПЕЦТЕХНИКА...
Комментарии
Реальные факты и маркетинговые мифы о деревянных домах
Реальный бизнес
Производство стройматериалов
Размеры газоблока
Размер керамзитоблока
Наш партнер
Расчет количества кирпича и блоков для строительства дома
РЕМОНТ КВАРТИР КАРАГАНДА
Рациональна ли облицовка стен дома из газобетона кирпичом?
Реклама натяжных потолков – делаем правильный выбор
Ремонт и обшивка потолка, стен и пола
{title}
Расчет блоков и кирпича. При строительстве дома каждого из нас волнует...
 admin    129    04.08.17
{title}
Натяжные потолки. Поэтому на начальном этапе развития бизнеса натяжные...
 admin    129    03.08.17
{title}
Ремонт квартир, домов и коттеджей в Сочи под ключ: до 3 лет гарантии на...
 admin    145    31.07.17
{title}
Работа после стажировки. скачать фото. Стажировка в рамках проекта...
 admin    121    31.07.17
{title}
Разновидности потолочных люстр для натяжных потолков: 41 фото оригинальных...
 admin    438    30.07.17
{title}
Современный выбор – это натяжные потолки. Современный выбор это натяжные...
 admin    135    05.08.17
{title}
Расчет количества блоков для строительства дома. Разнообразие...
 admin    148    04.08.17
{title}
Расчет фундамента для дома из кирпича. Расчет фундамента для дома из...
 admin    128    01.08.17
{title}
Звукоизоляция стен и пола квартиры своими руками. Наверное, многие...
 admin    109    28.07.17
{title}
Ремонт квартир проводка. В худшем случае у вас получится аляповатый...
 admin    132    26.07.17
Copyright © 2017