Погодные, климатические условия марса: атмосферные осадки и пыльные бури

Воздействие ветров Марса на рельеф планеты. Выветривание и дефляция почв

При тех больших скоростях, которые имеют ветры на Марсе, они могут производить не только аккумулятивную, но и дефляционную работу. Она заключается в механическом разрушении пород и выдувании частиц.

Дефляция усиливается там, где тектоническая трещиноватость совпадает с преобладающими направлениями ветров. Такие трещины на Марсе, как Темпе, Тантала, Мареоты, отпрепарированы — очищены ветром.

Под действием дефляции не только преобразуется уже существующий рельеф, но возникают и новые формы. К ним относятся ярданги — линейные борозды выдувания, разделенные гребнями, нередко заостренными. На Земле эти формы широко развиты в пустынях. Глубина борозд достигает нескольких метров.

Ярданги встречаются группами и всегда ориентированы в направлении господствующих ветров. На Марсе формы, напоминающие ярданги, обнаружены на возвышенности Фарсида, на равнине Амазония, Эолия и в южном полярном районе. Они намного превышают по размерам земные формы. Их длина достигает 50 км и более, ширина до 1 км, а глубина до 20 м.

Кроме ярдангов, на Марсе имеется большое количество замкнутых котловин и впадин, образование которых также связывается с глубинной дефляцией.

В южном приполярном районе Марса развит «ямчатый» рельеф — скопление различных по форме и размерам впадин (от 0,5 до нескольких километров в диаметре и глубиной до 400 м). Его образование в данное время может быть объяснено только дефляцией.

Глубинная дефляция на Земле имеет громадные масштабы. Примерами служат впадина Каттара в Африке размером 20—25 км в поперечнике и относительной глубиной 200 м, Турфанская впадина в Центральной Азии, расположенная на 150 м ниже уровня океана. В их пределах существуют восходящие и нисходящие турбулентные потоки воздуха, производящие как бы сверлящее действие и выносящие мелкоземистый материал вверх.

В марсианских кольцевых впадинах Аргир и Эллада также происходит дефляция. Подтверждением этого являются тучи пыли, поднимающиеся над Элладой во время глобальных бурь на высоту более 30 км. Процесс оседания пыли идет очень медленно. Во время ее осаждения формы рельефа на дне Эллады не просматривались, поэтому на некоторых снимках поверхность Эллады выглядела ровной и светлой. На других же снимках, сделанных после окончания пыльной бури, детали рельефа в виде гряд и кратеров стали видны отчетливее.

Воздействие ветров Марса на рельеф планеты, выветривание и дефляция почв

Атмосферные потоки на Марсе благодаря высокой скорости вызывают разрушение почвы. Этот процесс называется дефляцией.

Пример постепенной эрозии почвы на Марсе из-за ветра. Credit: NASA’s Mars Exploration Program.

Последствия дефляции на Марсе:

  1. Образование ярдангов (вытянутых гряд).
  2. Очищение тектонических трещин.
  3. Образование ямчатого рельефа.

Ярданги возникают в результате разрушения пород. Желобы и гребни чередуются и расположены по направлению ветра. На Земле они встречаются в Центральной Сахаре, в штате Аризона, на Марсе — на Фарсиде, равнинах Эолия и Амазония.

Ямчатый рельеф со множеством впадин различного размера, имеющих глубину до 400 м и диаметр до нескольких километров, характерен для южных приполярных регионов Марса. По сравнению с земными процессами глубинная дефляция (разрушение дна) в них невелика. Так, африканская впадина Каттара, одна из самых глубоких низменностей планеты, имеет глубину около 200 м и диаметр около 25 км.

Была ли на Марсе жидкая вода?

Ученые давно знают, что вода действительно была в изобилии на древнем Марсе. Несмотря на это, в ученом кругу никогда не существовало единого мнения о том, была ли именно жидкая вода распространена на поверхности планеты, или же она была в значительной степени представлена в виде льда.

Была ли температура на Марсе достаточно высокой, чтобы позволить воде находиться в жидком состоянии? Новое сравнение закономерностей появления минералов на Красной планете с аналогичными минералами на Земле придает вес идее о том, что ранний Марс мог иметь несколько длительных периодов, в течение которых преобладали ливни и сильные дожди. Когда теплый и дождливый период заканчивался, наступали своеобразные ледниковые периоды, когда вся вода на поверхности полностью замерзала.

Согласно новому исследованию, которое было проведено профессором геохимии из университета Пердью Бриони Хорган, приблизительно 3 миллиарда лет назад Марс мог испытывать своеобразные и неравномерные скачки температуры на своей поверхности.

Анализ геологии Марса также поддерживает подобную идею. Несмотря на это, климатические модели показывают, что из-за крайне малого количества тепла, поступающего от молодого Солнца, жидкая вода попросту не могла существовать на планете.

Однако здесь есть один нюанс.

Жидкая вода вполне могла находиться на Красной планете при условии наличия плотной атмосферы или пока еще неизученного какого-либо геологического или химического процесса, делавшего планету заметно теплее.

Возможно, именно так выглядел древний Марс

Исследовательская группа сравнила данные о характеристиках земных минералов со свойствами марсианских камней, обнаруженными с помощью спектрометра NASA CRISM, который в настоящее время находится на орбите Красной планеты. Спектрометр может удаленно идентифицировать поверхностные химические вещества, где когда-то существовала вода. В результате эксперимента выяснилось, что найденные марсианские минералы оказались весьма схожими с минералами, найденными на Земле. Кроме того, и те, и другие были образованы в результате длительного воздействия воды, что в очередной раз подтверждает теорию о том, что в прошлом Марс действительно мог быть сильно похожим на современную Землю, обладая большим количеством жидкой воды.

Откуда на Марсе ветер?

Несмотря на сильно разреженную атмосферу и низкое давление, на Марсе существуют ветры и даже очень сильные, во всяком случае сильнее, чем на Земле. Как же это возможно?

Для возникновения ветров необходимо несколько условий: суточное и сезонное изменения температуры и контрастность рельефа.

Температурные различия на Марсе большие. В летнее дневное время на экваторе поверхность нагревается до +25° С, а ночью остывает до —80° С. На полюсах температура практически и летом и зимой остается отрицательной, поэтому движение ветров на Марсе большей частью направлено от полюсов к экваториальным областям, причем, как и на Земле, из зимнего полушария в летнее.

Что касается рельефа, то на Марсе он даже контрастнее, чем на Земле, и определить это помогло давление атмосферы. Известно, что с высотой местности давление изменяется: чем выше рельеф, тем оно меньше, и наоборот. Приняв, что среднее давление в 6,1 • 102 Па характерно для местности с условной “нулевой” отметкой, получили, что наивысшие значения давления характерны для участков с высотой 3—4 км, а наинизшие — для высокоподнятых точек рельефа — в 27 км.

Таким образом, общая разница высоты рельефа на Марсе достигает 30— 31 км, тогда как на Земле он равен 20—21 км. На Марсе существуют возвышенности и низменные равнины, горные массивы, вулканы, вулканические плато и многочисленные кольцевые структуры.

Еще при телескопическом изучении на Марсе было установлено наличие пыльных бурь у красной планеты. Марсианские пыльные бури бывают настолько сильными, что накрывают добрую половину планеты!

При этом такие сильные бури на Марсе не такое уж редкое явление. Менее значительные циклоны и антициклоны возникают очень часто, как в северном, так и в южном полушариях почти во все времена года. Средняя скорость ветров на Марсе составляет 50 м/с, а максимальная превышает 100 м/с. При такой скорости ветры увлекают поверхностные частицы почти в 5 раз тяжелее, чем на Земле, и переносят их на значительные расстояния.

Потеря мышечной массы

Если вы видели съемки астронавтов на борту Международной космической станции, вы не могли не заметить, что они проводят довольно много времени, упражняясь на велотреке и других тренажерах. Делают они это оттого, что изменение силы тяжести оказывает колоссальное влияние на мышечную структуру тела.

На Земле мы почти не замечаем работу, которую совершают наши «антигравитационные» мышцы, а именно квадрицепсы, мышцы шеи и спины. Но без ежедневного давления гравитации на эти части тела они быстро утратят свою обычную функцию.

В настоящее время разрабатываются контрмеры, которые позволят поддерживать тела космонавтов в рабочем и здоровом состоянии – особенно мышечную систему – для коротких перелетов. Но никто никогда не проводил десятки лет на другой планете. Поэтому исследовать последствия такого пребывания просто невозможно, не пожив на другой планете с десяток лет.

Здоровье мышц также напрямую влияет на скелетную систему, репродуктивное здоровье и органы.

Полярные сияния на Марсе

Один из самых ярких примеров этого явления зафиксирован 14 августа 2004 года. Его наблюдал прибор SPICAM, установленный на космическом аппарате Mars Express. Полярное сияние находилось в небе над регионом Марса Земля Киммерия. И, по расчетам ученых, имело протяженность около 30 километров при высоте 8 километров.

Космический аппарат MAVEN также наблюдал полярные сияния. Это произошло 17 марта 2015 года. Явление наблюдали в самых северных широтах планеты. Из-за малого количества кислорода и азота в атмосфере Марса они были намного слабее по яркости, чем на Земле. К тому же магнитные поля на Марсе весьма и весьма слабые.

Полярные сияния на Красной планете являются результатом взаимодействия магнитных полей с солнечным излучением. Точно так же, как это происходит и на Земле.

Вода на Марсе

Ученые считают, что вода на Марсе есть, большая ее часть находится в приповерхностных слоях и, скорее, в виде льда, небольшое ее количество, возможно, есть в атмосфере в виде пара. Очень много льда может быть сосредоточено в полярных шапках. Например, по оценкам специалистов, если бы растаял лед южной полярной шапки, то он бы покрыл поверхность Марса слоем воды в 11 метров.

Статья по теме: Есть ли жизнь на Марсе — вопрос, на который ученые уже нашли ответ?

В 2008 году орбитальный зонд NASA Mars Reconnaissance Orbiter обнаружил на Марсе область вечной мерзлоты, которая находится недалеко от полюсов. Спустя семь лет специалисты NASA объявили, что темные полосы, которые появляются и исчезают на поверхности Марса при смене сезонов, могут образовываться на месте периодических потоков соленой воды. Правда, чуть позже, открытие американских ученых некоторые научные деятели поставили под сомнение и заявили, что эти полосы могут вовсе не иметь никакого отношения к жидкой воде.

Фото: NASA / Темные полосы на Марсе, которые, как считают ученые, могут образовываться на месте периодических потоков соленой воды

В 2016 году американцы сделали очередное открытие. Исследователи заявили, что под равниной Утопия они нашли замерзшее подземное озеро, и в случае, если бы это озеро растаяло, объем воды в нем был бы равноценен объему воды озера Верхнее в США — крупнейшего по площади пресному водоема мира.

В 2018 году вышел доклад международной группы ученых, которая сообщила об открытии с помощью радара MARSIS первого известного постоянного водоема на Красной планете. Речь шла о подледном озере, обнаруженном подо льдом Южной полярной шапки на глубине 1,5 км. Ширина этого озера может составлять 20 км, предполагается, что водоем заполняет жидкая вода. Исследования, проведенные радаром MARSIS, показывают, что жидкая вода в озере могла появиться из-за высоких концентраций в ней перхлоратов, которые способствуют таянию замерзшей воды.

На снимке ниже запечатлен марсианский кратер Королев. В 2018 году орбитальный аппарат Mars Express выяснил, что в кратере может содержаться 2200 км³ водяного льда — примерно столько, сколько воды содержится в канадском Большом Медвежьем озере.


Фото: ESA / Кратер Королев, содержащий 2200 кубических километров льда

Что касается наличия жидкой воды на поверхности планеты, то в таком виде там она существовать не может. Причина — низкие температуры и низкое атмосферное давление: оно составляет 1/170 от земного. Когда подповерхностный марсианский лед оказывается на поверхности, из-за низкого давления он сразу испаряется — переходит в газообразное состояние, минуя жидкое.

Чем Марс похож на Землю и чем от нее отличается

Марс — четвертая от Солнца планета. Свое название получила в честь древнеримского бога войны. Эту планету можно увидеть в небе с поверхности Земли невооруженным глазом, ярче нее только Солнце, Луна и Венера. Если заметите на небе яркую, красноватого цвета немигающую точку — это Марс.

Фото: NASA

Диаметр Марса равен 6 779 км, Земли — 12 742 км, наша планета почти в два раза больше своего соседа. Площадь поверхности Марса — 145 млн км², Земли — 510 млн км², однако почти 71% поверхности земного шара покрыто водой, получается, что общая площадь суши Земли составляет около 150 млн км². На поверхности соседней планеты воды в жидком состоянии нет, значит, размеры суши Марса и суши нашей планеты приблизительно одинаковы.

Статья по теме: Публикуем редкие снимки Марса, сделанные учеными в 1909 году

Масса Марса примерно в 11 раз меньше массы Земли, что значительно влияет на силу тяжести. У поверхности соседней планеты сила тяжести составляет 38% от земной, то есть она в 2,5 раза слабее. Поэтому 100-килограммовый человек, вдруг оказавшийся на Марсе, будет весить там всего 38 килограммов.

Исследования, проведенные на борту МКС, показывают, что если человек длительное время подвергается влиянию силы тяжести в 1-2 раза меньшей, чем на Земле, он начинает страдать от потери костной ткани, мышечной массы, у него могут начаться проблемы со зрением. Иными словами, такие условия могут нанести непоправимый вред здоровью.

Фото: NASA / Марсианская зима

Марс совершает один оборот вокруг своей оси за 24 часа 39 минут 36 секунд, это значит, продолжительность марсианских суток, или, как их называют ученые, солов, практически равна продолжительности земных суток, что хорошо подходит для нашей физиологии.

Что касается одного витка вокруг Солнца, то Марс его делает гораздо дольше, чем Земля — за 687 земных дня, в результате марсианский год длится почти в два раза больше, чем земной.

На нашей планете главная причина смены времен года — наклон земной оси по отношению к плоскости эклиптики, который равен 23,5°. Угол наклона Марса к плоскости орбиты — 25,19°, то есть практически такой же, что и у Земли. Значит, на Марсе, как и на нашей планете, происходит смена времен года. Правда, из-за того, что марсианский год продолжительнее земного, все 4 сезона там длятся гораздо дольше.

Фото: NASA/Wikimedia Commons / Сравнение размеров Земли и Марса

Марс находится от Солнца на среднем расстоянии 230 млн км, Земля же — на 150 млн км. Поэтому на соседней планете довольно прохладно: там более холодное лето, чем на Земле.

Температура на поверхности Марса постоянно колеблется. Летом при благоприятных условиях на экваторе в дневное время она может достигать +35°C, а ночью опускаться до -73°C. Такие резкие перепады обусловлены тем, что атмосфера Марса в 100 раз менее плотная, чем атмосфера Земли, а значит, она не способна долго удерживать тепло. Из-за удаленности на поверхность Марса падает всего 43% солнечного света от того общего количества, что доходит до поверхности Земли.

Орбита Марса вокруг Солнца такая же, как и у Земли — эллиптическая. Соседняя планета ближе всего подходит к звезде (проходит перигелий) в разгар зимы в северном полушарии и лета в южном, дальше всего от светила (проходит афелий) находится во время зимы в южном полушарии и, соответственно, лета в северном. Так что климат северного и южного полушарий отличается: летом температура в южных регионах может быть выше, чем в северных, разница достигает +30°C.

Состав атмосферы Марса

Химический состав атмосферы Марса сильно отличается от земного. Воздух на Марсе состоит из следующих газов:

● Основу атмосферы планеты Марс составляет углекислый газ. Он занимает примерно 95% от её объёма. Это единственный тяжелый газ, который способна удержать планета.

● Большую часть углекислого газа составляет CO2, однако долю от него занимает и оксид углерода CO. Эта доля необычно мала и заставляет ученых строить теории о том, почему CO не накапливается.

● Азот N2. Он составляет очень малую часть атмосферы – всего 2,7%. Однако задержаться в атмосфере он может только в виде двойной молекулы. Излучение Солнца постоянно расщепляет атмосферный азот на атомы, после чего он рассеивается.

● Аргон занимает 1,6% и представлен в основном тяжелым изотопом аргон-40.

● Кислород на Марсе также есть, но содержится в основном в верхней атмосфере и появляется при разложении других веществ, откуда затем переходит и в нижние слои. Из-за этого на высоте примерно 110 км и выше содержится в 3-4 раза больше O2, нежели ниже этого уровня. Дышать им нельзя.

● Озон – наиболее неопределенный газ в марсианской атмосфере. Его содержание зависит от температуры воздуха, а значит от времени года, широты и полушария.

● Метан на Марсе, несмотря на малое содержание в атмосфере, – один из самых загадочных газов планеты. Он может иметь несколько источников, но наиболее актуальных два: влияние температур (например, в вулканах) и переработка веществ бактериями и жвачными животными, после чего образуется бактериальный метан. Последний представляет особый интерес для астробиологии – именно его ищут на потенциально населенных планетах, чтобы доказать что на них есть жизнь. На что может указывать метан, появляющийся на Марсе всплесками – неизвестно.

● Органические соединения, такие как H2CO, HCl и SO2, тоже есть в составе атмосферы Марса. Они могут прояснить вопрос, о котором говорилось выше, так как их наличие говорит об отсутствии вулканической активности – а значит и термогенного метана.

● Вода. Пусть ее содержание в несколько сотен раз меньше чем в самых сухих районах Земли, она все же присутствует.

● Стоит также упомянуть, что атмосфера Марса наполнена мельчайшими пылевыми частицами (преимущественно — оксид железа). Они делают атмосферу красновато-оранжевой со стороны, и они же отвечают за цвета неба, обратные земным: дневные небеса на Марсе желто-коричневые, на закате и рассвете они становятся розовыми, а вокруг Солнца – голубыми.

Радиация, пыльные бури и другие особенности Марса

Радиация у поверхности планеты представляет опасность, однако по данным НАСА, полученным из сбора анализов марсоходом “Curiosity”, следует, что даже за 500-дневный период прибывания на Марсе (+360 дней в пути), астронавты (с учетом защитного снаряжения) получили бы “дозу” радиации равную 1 зиверту (~100 рентген). Эта доза опасна, однако безусловно не убьет взрослого человека “на месте”. Считается, что полученный 1 зиверт облучения, на 5% увеличивает риск астронавта на развитие рака. По мнению ученых, ради науки можно пойти и на большие лишения, тем более, первый шаг на Марс, даже если он и сулит проблемы со здоровьем в будущем… Это определенно шаг в бессмертие!

На поверхности Марса, сезонно, бушуют сотни  пылевых дьяволов (торнадо) поднимающие в атмосферу пыль из железных окислов (ржавчину, по простому) которая обильно покрывает марсианские пустоши. Марсианская пыль очень мелкая, что в сочетании с малой силой тяжести приводит к тому, что в атмосфере всегда присутствует её значительно количество, достигающее особенно больших концентраций осенью и зимой в северном, и весной и летом – в южном полушариях планеты.

Пылевые бури на Марсе – крупнейшие в солнечной системе, способные покрывать всю поверхность планеты и порой идти месяцами. Основные сезоны пылевых бурь на Марсе – весна и лето.

Механизм таких мощных погодных явлений изучены не до конца, но с большой долей вероятности объясняется следующей теорией: когда большое число частичек пыли поднимается в атмосферу, это приводит к её резкому прогреву на большую высоту. Теплые массы газов устремляются в сторону холодных областей планеты, порождая ветер. Марсианская пыль, как уже отмечалось, очень легкая, поэтому сильный ветер поднимает в верх ещё больше пыли, что в свою очередь ещё сильнее нагревает атмосферу и порождает ещё более сильные ветры, которые в свою очередь поднимают ещё больше пыли… ну и так далее!

Дождей на Марсе нет, да и откуда им взяться на морозе в -60 градусов? А вот снег иногда идет. Правда состоит такой снег не из воды, а из кристалликов углекислого газа, да и по свойствам больше напоминает туман, а не снег (слишком малы “снежинки”), однако будьте уверены – это самый настоящий снег! Просто с местной спецификой.

Вообще, “снег” идет почти по всей территории Марса, причем процесс этот цикличный – ночью углекислый газ замерзает и превращается в кристаллы, выпадая на поверхность, а днем оттаивает и снова возвращается в атмосферу. Однако на северном и южном полюсах планеты, в зимний период, царит мороз до -125 градусов, поэтому единожды выпав в виде кристаллов, газ уже не испаряется, и лежит пластом до весны. Учитывая размер снежных шапок Марса, надо ли говорить, что зимой концентрация углекислого газа в атмосфере падает на десятки процентов? Атмосфера становится ещё более разреженной, и как следствие задерживает ещё меньше тепла… Марс погружается в зиму.

Спустя несколько месяцев, планета оказывается ближе к солнцу, начинается процесс активного таяния снеговых шапок, атмосфера насыщается углекислым газом, становится плотнее, и тогда наступает настоящее марсианское лето!

Южная шапка Марса не истаивает полностью даже в самые “жаркие” годы, а вот северная полярная шапка летом может растаять совсем, обнажая под толщей “сухого льда” (углекислого) настоящий водяной лед.

Типичный марсианский пейзаж – бесплодная каменистая равнина

Глобальное потепление: Марс можно нагреть?

К счастью или к сожалению, в зависимости от точки зрения, мы, люди, имеем большой опыт в нагревании планеты. За столетия выбросов углекислого газа мы непреднамеренно повысили температуру поверхности Земли с помощью простого парникового механизма. Мы выделяем углекислый газ, который действительно хорошо пропускает солнечный свет и предотвращает утечку теплового излучения, поэтому он ведет себя на Земле как огромное невидимое одеяло. Повышенное тепло способствует испарению воды океанов в атмосферу, которая, таким образом, получает еще один покровный слой, повышающий температуру, что, в свою очередь, приводит к испарению еще большего количества воды и большему нагреванию атмосферы планеты.

Если это работает на Земле, возможно, это сработает и на Марсе. Атмосфера Марса практически полностью исчезла в космосе, но Красная планета имеет огромные запасы водяного льда и замороженного углекислого газа в полярных шапках и прямо под поверхностью планеты.

Если бы люди могли каким-то образом нагреть полярные шапки, это могло бы выбросить в атмосферу достаточно углекислого газа, чтобы вызвать парниковое потепление. Все, что нам нужно было бы сделать тогда, — это уйти, наблюдать и веками ждать, пока физика сделает свое дело и превратит Марс в гораздо менее агрессивное место.

К сожалению, эта простая идея, вероятно, не сработает. Первая проблема — это разработка технологии обогрева. Конструкции, которые для этого нужны, начиная от гигантских опор и до создания огромного космического зеркала, которое фокусировало бы больше света и, следовательно, тепла,  требуют радикальных скачков в технологиях и производстве в космосе, что намного превышает возможности человечества в настоящее время. В случае космического зеркала, например, нам нужно было бы добыть около 200 000 тонн алюминия где-то в космосе, в то время как в настоящее время мы способны извлекать… ну, ноль тонн алюминия в космосе.

Постепенно приходит и досадное осознание того, что на Марсе недостаточно CO2, чтобы вызвать тенденцию к потеплению. В настоящее время на Марсе давление атмосферы составляет менее одного процента земного атмосферного давления. Если бы мы могли испарить каждую молекулу CO2 и H2O на Марсе в атмосферу, давление на Красной планете составило бы… 2% атмосферного давления на Земле.

Потребуется вдвое большее атмосферное давление, чтобы предотвратить кипение пота на коже, и в десять раз большее для того, чтобы человеку не понадобился скафандр. И это мы еще не говорим о недостатке кислорода.

Чтобы решить проблему нехватки легкодоступных парниковых газов, есть несколько радикальных предложений. Может быть для этого можно использовать растения, выделяющие хлорфторуглерод, который являются действительно агрессивным парниковым газом. Или мы могли бы привлечь несколько комет, богатых аммиаком, из внешней части Солнечной системы. Аммиак представляет собой отличный парниковый газ, и в конечном итоге при распаде превращается в безвредный азот, который составляет большую часть нашей атмосферы.

Если предположить, что мы сможем преодолеть технологические проблемы, связанные с этими предложениями, остается еще одно колоссальное препятствие: отсутствие магнитного поля. Если мы не защитим Марс магнитным полем, каждая молекула, попадающая в атмосферу, будет унесена солнечным ветром. Это будет нелегко. Есть много креативных решений.

Возможно, нам удастся построить в космосе огромный электромагнит, чтобы отражать солнечный ветер. Или можно было бы опоясать Марс сверхпроводником и создать искусственную магнитосферу. Естественно, мы очень далеки от реализации хотя бы одного из этих решений. Так сможем ли мы когда-нибудь терраформировать Марс в будущем и сделать его более гостеприимным? Конечно, с научной точки зрения это возможно — у нас нет основополагающих законов физики, препятствующих этому…

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector