Размеры звезд во вселенной

Содержание:

Методы визуализации количества звезд

Но паниковать не стоит, ведь всегда есть лазейки. Инфракрасные камеры позволяют пробраться сквозь пыль и дым. Среди подобных проектов можно вспомнить телескоп Спитцер, COBE, WISE и Германская космическая обсерватория.

Все они появились в последний десяток лет, чтобы изучить пространство в инфракрасных длинах волн. Это помогает отыскать скрытые звезды. Но и это не позволяет увидеть всего, поэтому ученые вынуждены производить расчеты и выдвигать предположительные цифры. Наблюдения начинаются со звездных орбит на галактическом диске. Благодаря этому вычисляется орбитальная скорость и период вращения (движения) Млечного Пути.

Галактическая структура

Данная фотография Хаббла показывает лишь крошечный участок неба

Начнем с того, что Солнечная система расположена в галактическом диске спирального типа, с протяжностью в 100000 световых лет. Мы отдалены от центра на 30000 световых лет. То есть, между нами и противоположной стороной находится огромная пропасть.

Художественная интерпретация структуры Млечного Пути

Дальше возникает еще одна сложность наблюдения. Одни звезды ярче других и порой их свет затмевает соседей. Наиболее отдаленные звезды, доступные невооруженным глазом, расположены на дистанции в 1000 световых лет. Млечный Путь переполнен ослепительными огнями, но многие из них скрываются за газовой и пылевой дымкой. Именно этот вытянутый след называют «молочным».

Наблюдению открыты звезды в нашем галактическом «районе». Представьте, что вы попали на вечеринку в помещение, где вся площадь забита людьми. Вы стоите в одном углу и вас просят назвать точное количество присутствующих. Но это не все. Один из гостей включает дымовую машину, и вся комната заполняется густым туманом, закрывая от вас всех, кто стоит дальше. А теперь считайте!

Эпизод IV. Конец существования звезд и их гибель

Диск звезды Бетельгейзе, снимок телескопа Хаббл

Старые светила, как и их юные собратья, делятся на несколько видов: с малой массой, средних размеров, сверхмассивные звезды, белые карлики, нейтронные и черные дыры. Что касается объектов с небольшой массой, то до сих пор нельзя точно утверждать какие именно процессы с ними происходят на последних стадиях существования. Все подобные явления гипотетически описаны при помощи компьютерного моделирования, а не на основании тщательных наблюдений за ними. После окончательного выгорания углерода и кислорода происходит увеличение атмосферной оболочки звезды и быстрая потеря ею газовой составляющей. В финале своего эволюционного пути светила многократно сжимаются, а их плотность наоборот значительно возрастает. Такую звезду принято считать белым карликом. Затем в ее жизненной фазе следует период красного сверхгиганта. Последним в цикле существования звезды является ее превращение, в результате очень сильного сжатия, в нейтронную звезду. Однако не все подобные космические тела становятся таковыми. Некоторые, чаще всего наиболее крупные по параметрам (больше 20-30 масс Солнца), переходят в разряд черных дыр в результате коллапса.

Конец жизни: 5 миллионов – 5 миллиардов лет

Солнце – источник жизни, дарящий нам тепло и свет, но оно и станет нашей погибелью. Дело в том, что звезда медленно набирает температуру. Об этом можно почитать в книге Питера Уорда и Дональда Браунли «Жизнь и смерть планеты Земля». Авторы как раз описывают процесс выработки солнечной энергии. Через 500 миллионов лет температура на планете станет такой высокой, что большая ее часть превратится в пустыню. У крупных существ не будет шансов и они переберутся на полюса.

Все это повлияет на эволюцию. Вымрут большие животные и приверженцы холода. Вместо них на верхушку цепочки поднимутся насекомые и бактерии. Однажды станет так жарко, что океаны превратятся в кипящие котлы и больше не останется ни одного укрытия. Выживут лишь несколько подземных организмов.

Сколько звёзд в нашей Галактике

Как известно, наша планета Земля находится в галактике Млечный Путь. По оценке астрономов, в ней содержится от 200 до 400 миллиардов светил. Безусловно, они различаются по физическим свойствам и характеристикам, возрасту и удалённости.

Правда, число, так сказать, млечных светил лишь предполагаемое. Ведь изучение и исследование галактики продолжаются и по сей день.

Впрочем, некоторые из них нам хорошо известны. В основном, это видимые с земной поверхности звёздные тела или те, которые относительно недалеко расположены от нас. К слову, в астрономии существует утверждённая таблица звезд

Млечный Путь

Какие звезды называют маяками Вселенной

Что интересно, не все светила носят такое название, а лишь цефеиды. Они обладают мощным излучением, которое в несколько тысяч раз больше солнечного.Цефеиды — отдельный класс, представляющий небесные звезды с высокой светимостью. Причем это пульсирующие переменные, сверхгигантские светила. Среди переменных объектов у цефеид хорошо изучили зависимость между периодом и светимостью. Что, соответственно, позволяет использовать их как стандартные свечи. Другими словами по ним определяют расстояния до космических объектов, в том числе самых отдалённых. Так, к примеру, астрономы устанавливают расстояние до других галактик.Собственно говоря, именно поэтому цефеиды называют маяками Вселенной.

От самых маленьких

Размеры звезд Млечного пути

Зададимся вопросом, какие же размеры имеют самые маленькие члены этого класса космических объектов? Мы даем команду бортовому компьютеру лететь к ближайшей нейтронной звезде. Гиперскачок и вуаля, мы подлетаем к крохотной звезде со странным названием — RX J1856.5-3754.

RX J1856.5-3754 рентгеновский снимок телескопа Чандра

«Одиссей» завис высоко над поверхностью крохи, которая имеет диаметр всего 10-20 километров, но наши двигатели неистово набирают скорость, а информация с экранов говорит, будто мы на орбите Солнца! И здесь нас ждет первая неожиданность! Наименьшие представители звездного семейства, имеют диаметр порядка 15 километров. Но их масса превышает Солнечную. Только представьте, сколь плотным объектом будет нейтронная звезда. После элементарных математических расчетов становится ясно, что компактность упаковки вещества там превышает таковую атомного ядра.

Термоядерные реакции

Звезду можно представить как гигантский ядерный очаг. Термоядерная реакция внутри нее превращает водород в гелий в ходе слияния (синтеза) ядер водорода, благодаря чему рождается столь необходимая для звезды энергия. Атомные ядра водорода — протоны — объединяются в ядра атомов гелия с двумя нейтронами. Однако протоны — электрически заряженные элементарные частицы, которые при приближении отталкиваются друг от друга. Так что из двух протонов новое ядро не построишь. Нужен какой-то элемент, причем более крепкий, чем силы электрического отталкивания. Эту роль в атомных ядрах играет другая ядерная частица — нейтрон.

Ядро обычного атома водорода имеет всего один протон. Но у его разновидностей — дейтерия и трития — в ядрах кроме одного протона имеется и нейтрон: у дейтерия один, а у трития два. Оба они также присутствуют в недрах звезд.

Атом дейтерия соединяется с атомом трития, образуя атом гелия и свободный нейтрон. Именно из гелия и формируется ядро звезды. В нем также содержатся более тяжелые химические элементы (например, железо), которые были захвачены из «материнской» туманности или же образуются во время термоядерных реакций. В результате этого процесса высвобождается огромное количество энергии.

Скорость протекания ядерного синтеза пропорциональна массе звезды в четвертой степени. Это значит, что если масса одной звезды больше массы второй в два раза, то на первой ядерное топливо горит в 16 раз (2 в четвертой степени) раз быстрее.

Следовательно, массивные звезды сгорают быстрее. Самые тяжелые сжигают весь водород за несколько сотен тысяч лет, а легкие красные звезды могут «тлеть» несколько миллиардов лет.

Если говорить о возрасте, то молодыми считаются звезды очень большой массы и очень высокой светимости, то есть те, которые излучают энергии во много раз больше, чем Солнце. Они гораздо моложе нашего светила, потому что столь интенсивно теряют энергию, что в состоянии существовать только сравнительно короткое по астрономическим масштабам время. Недавно возникшие звезды — это, прежде всего, гигантские горячие звезды голубоватого цвета, так называемые голубые сверхгиганты.

  • Звездные карты: как найти объект на небе
  • Красные гиганты, белые карлики, пульсары
  • Нейтронные звезды, или пульсары

Поделиться ссылкой

Какова реальная структура Вселенной?

Долгое время научные представления человечества о космосе строились вокруг планет Солнечной системы, звезд и черных дыр, населяющих наш звездный дом – галактику Млечный путь. Любой другой галактический объект, обнаруживаемый в космосе с помощью телескопов, автоматически вносился в структуру нашего галактического пространства. Соответственно отсутствовали представления о том, что Млечный Путь – не единственное вселенское образование.

Эдвин Хаббл

Ограниченные технические возможности не позволяли заглянуть дальше, за пределы Млечного Пути, где по устоявшемуся мнению начинается пустота. Только в 1920 году американский астрофизик Эдвин Хаббл сумел найти доказательства того, что Вселенная значительно больше и наряду с нашей галактикой в этом огромном и бескрайнем мире существуют другие, большие и маленькие галактики. Реальной границы Вселенной не существует. Одни объекты расположены к нам достаточно близко, всего несколько миллионов световых лет от Земли. Другие наоборот, расположены в дальнем углу Вселенной, пребывая вне зоны видимости.

Прошло почти сто лет и количество галактик сегодня уже оценивается в сотни тысяч. На этом фоне наш Млечный путь выглядит совсем не таким огромным, если не сказать, совсем крохотным. Сегодня уже обнаружены галактики, размеры которых трудно поддаются даже математическому анализу. К примеру, самая большая галактика во Вселенной IC 1101 имеет диаметр 6 миллионов световых лет и состоит из более 100 триллионов звезд. Этот галактический монстр находится на расстоянии более миллиарда световых лет от нашей планеты.

Сравнение размеров

Структура такого огромного образования, каковым является Вселенная в глобальном масштабе, представлена пустотой и межзвездными образованиям – волокнами. Последние в свою очередь делятся на сверхскопления, межгалактические скопления и галактические группы. Самым малым звеном этого огромного механизма является галактика, представленная многочисленными звездными скоплениями – рукавами и газовыми туманностями. Предполагается, что Вселенная постоянно расширяется, заставляя тем самым двигаться галактики с огромной скоростью по направлению от центра Вселенной к периферии.

Структура Вселенной

Темная материя – она же пустота, сверхскопления, скопления галактик и туманности – это все последствия Большого взрыва, который положил начало образованию Вселенной. В течение миллиарда лет происходит трансформация ее структуры, меняется форма галактик, так как одни звезды исчезают, поглощенные черными дырами, а другие наоборот, трансформируются в сверхновые, становясь новыми галактическими объектами. Миллиарды лет назад в расположение галактик было совсем другое, чем мы наблюдаем сейчас. Так или иначе, на фоне постоянных астрофизических процессов, происходящих в космосе, можно сделать определенные выводы о том, что наша Вселенная имеет не постоянную структуру. Все космические объекты находятся в постоянном движении, меняя свое положение, размеры и возраст.

Телескоп Хаббл

На сегодняшний день благодаря телескопу Хаббл удалось обнаружить месторасположение наиболее близких к нам галактик, установить их размеры и определить местоположение относительного нашего мира. Стараниями астрономов, математиков и астрофизиков составлена карта Вселенной. Выявлены одиночные галактики, однако в большинстве своем, такие крупные вселенские объекты группируются по несколько десятков в группе. Средний размер галактик в такой группе составляет 1-3 млн. световых лет. Группа, к которой относится наш Млечный Путь, насчитывает 40 галактик. Помимо групп в межгалактическом пространстве имеется огромное количество карликовых галактик. Как правило, такие образования являются спутниками более крупных галактик, как наш Млечный путь, Треугольник или Андромеда.

Состав Вселенной

За группами галактик идут скопления, области космического пространства в которых существует до сотни галактик различных видов, форм и размеров. Скопления имеют колоссальные размеры. Как правило, диаметр такого вселенского образования составляет несколько мегапарсек.

Теория большого взрыва

Самые крупные образования во Вселенной – галактические сверхскопления, которые объединяют группы галактик. Самое известное сверхскопление – Великая Стена Клоуна, объект вселенского масштаба, растянувшийся в длину на 500 млн. световых лет. Толщина этого сверхскопления составляет 15 млн. световых лет.

На каждого человека на Земле приходится 285 галактик

фото: NASA/ESA/Hubble Heritage Team/nasa.gov

Если взять каждую известную на сегодняшний день галактику и поделить на количество живущих на Земле человек, то получится, что на каждого человека придется по 285 галактик.

Имея дело с такими астрономически большими числами, невозможно вручную подсчитать каждую галактику, и даже очень непросто получить приблизительную оценку. Поэтому до конца 2016 года астрономы считали, что во Вселенной насчитывается около 100-200 миллиардов галактик. Они не просто ошиблись — они ошиблись в десять раз.

Новые исследования показывают, что общее количество галактик составляет около 2 триллионов, или 285 галактик на каждого человека на Земле. Впрочем, следующие поколения ученых лет через 20-30 вполне могут и эту цифру посчитать смехотворно заниженной.

Образование и эволюция

После стадии главной последовательности, когда звезда израсходовала водород в ядре, и некоторого его сжатия, в нём начинается реакция горения гелия. Внешние слои звезды сильно расширяются, и, хотя светимость увеличивается, поток через поверхность звезды уменьшается, и она остывает. Этот процесс, а также дальнейшая судьба звезды, зависит от её массы.

Звёзды малой массы

Звезды с самой маленькой массой, по разным оценкам, до 0,25–0,35 солнечных масс, никогда не станут гигантами. Такие звёзды полностью конвективны, и поэтому водород расходуется равномерно и продолжает участвовать в реакции до тех пор, пока не израсходуется полностью. Модели показывают, что звезда будет постепенно разогреваться и станет голубым карликом, но гелий в ней не загорится — температура внутри её так и не станет достаточно высокой. После этого звезда превратится в белого карлика, состоящего преимущественно из гелия. Однако, наблюдательных данных, подтверждающих это, нет: срок жизни красных карликов может достигать 10 триллионов лет, в то время как возраст Вселенной — порядка 14 миллиардов лет.

Звёзды со средней массой

Внутренняя структура подобной Солнцу звезды и красного гиганта.

Если масса звезды превышает этот предел, то она уже не полностью конвективна, и когда звезда потребит весь водород, доступный в её ядре для термоядерных реакций, её ядро начнёт сжиматься. Водород начнёт сгорать уже не в ядре, а вокруг него, из-за чего звезда начнёт расширяться и охлаждаться, и немного увеличит светимость, став субгигантом. Гелиевое ядро будет увеличиваться и в какой-то момент его масса превысит предел Шёнберга — Чандрасекара. Оно быстро сожмётся, и, возможно, станет вырожденным. Внешние слои звезды расширятся, а также начнётся перемешивание вещества, так как конвективная зона тоже увеличится. Так звезда станет красным гигантом.

Если масса звезды не превышает ~0,4 массы Солнца, то гелий в ней так и не загорится, и, когда водород закончится, звезда сбросит оболочку и станет гелиевым белым карликом.

Если же масса звезды больше ~0,4 массы Солнца, то температура в ядре в какой-то момент достигнет 108 K, в ядре произойдет гелиевая вспышка и запустится тройной альфа-процесс. Внутри звезды понизится давление, следовательно, понизится светимость, и звезда перейдёт с ветви красных гигантов на горизонтальную ветвь.

Постепенно в ядре заканчивается и гелий, и в то же время накапливается углерод и кислород. Если масса звезды меньше 8 солнечных, то ядро из углерода и кислорода сожмётся, станет вырожденным, и горение гелия будет происходить вокруг него. Как и в случае с вырождением гелиевого ядра, начнётся перемешивание вещества, которое повлечёт за собой увеличение размеров звезды и рост светимости. Эта стадия называется асимптотической ветвью гигантов, на которой звезда находится лишь около миллиона лет. После этого звезда станет нестабильной, потеряет оболочку и от неё останется углеродно-кислородный белый карлик, окруженный планетарной туманностью.

Звёзды с большой массой

У звёзд главной последовательности с большими массами (более 8 солнечных масс) после формирования углеродно-кислородного ядра начнёт сгорать углерод в термоядерных реакциях. Кроме того, в таких звёздах стадия горения гелия начинается не в результате гелиевой вспышки, а постепенно.

В звёздах с массами от 8 до 10–12 солнечных впоследствии могут сгорать и более тяжёлые элементы, но до синтеза железа не доходит. Их эволюция, в целом, оказывается такой же, как и у менее массивных звёзд: они также проходят стадии красных гигантов, горизонтальную ветвь и асимптотическую ветвь гигантов, а затем становятся белыми карликами. Они отличаются большей светимостью, а белый карлик, который от них остаётся, состоит из кислорода, неона и магния. В редких случаях происходит взрыв сверхновой.

Звёзды с массой более 10–12 солнечных имеют очень большую светимость, и на этих стадиях эволюции их относят к сверхгигантам, а не к гигантам. Они последовательно синтезируют всё более тяжёлые элементы, доходя до железа. Дальнейший синтез не происходит, так как энергетически невыгоден, и в звезде образуется железное ядро. В некоторый момент ядро становится таким тяжелым, что давление больше не может поддерживать вес звезды и самого себя, и коллапсирует с выделением большого количества энергии. Это наблюдается как взрыв сверхновой, а от звезды остаётся либо нейтронная звезда, либо чёрная дыра.

Фото созвездий на небе и их названия

48 древних созвездий – украшение небесной сферы. С каждым связана легенда. И неудивительно – звезды играли большую роль в жизни людей. Навигация, масштабное земледелие были бы невозможны без хорошего знания небесных тел.

Из всех созвездий выделяются незаходящие, расположенные на 40 градусе широты или выше. Жителям северного полушария они видны всегда, независимо от времени года.

5 главных незаходящих созвездий по алфавиту – Дракон, Кассиопея, Медведица Большая и Малая, Цефей. Они видны круглый год, особенно хорошо на юге России. Хотя на северных широтах круг незаходящих звезд шире.

Существенно, что объекты созвездий совсем необязательно расположены рядом. Для земного наблюдателя поверхность небосвода выглядит плоской, но на самом деле одни звезды гораздо дальше других. Потому неправильно будет написать «корабль совершил прыжок в созвездие Микроскоп» (есть такое в южном полушарии). «Корабль может совершить прыжок по направлению к Микроскопу» так будет правильно.

Несколько интересных фактов о космосе, из-за которых вы почувствуете себя очень маленькими:

  • в межзвездном пространстве царит тишина;
  • есть звезда с температурой 26,7 градуса Цельсия и всего в 47 световых годах от нас — отличное место для межзвездного отпуска;
  • в космосе пахнет горячим металлом и обжаренным стейком — так утверждают многие астронавты;
  • люди могли бы летать, взмахивая прикрепленными к рукам крыльями, если бы жили на Титане, самом большом спутнике Сатурна. Это всего лишь теория, но атмосфера там действительно очень плотная, а сила тяжести слишком мала;
  • невозможно сосчитать количество звезд, существующих во Вселенной. Мы можем только предположить это число. Согласно исследованию Австралийского национального университета, это примерно 70 секстиллионов;
  • если представить Солнце размером с футбольный мяч, то Земля будет с горошину;
  • следы космонавтов, высадившихся на Луну, сохранятся миллионы лет, поскольку там нет атмосферы, дождей или ветра, чтобы стереть отпечатки;
  • Солнце из космоса кажется белым;
  • ученые обнаружили в космосе огромный водоем — в 140 триллионов раз больше наших океанов;
  • российский отчет о 33 тараканах, выведенных в космосе, показал, что они жестче, сильнее, смелее и быстрее тараканов на Земле;
  • каждый год Луна удаляется от нас на 1,5 дюйма;
  • существует явление, называемое учеными гравитационным линзированием: гравитация изгибает свет до такой степени, что объекты видятся в другом месте, нежели там, где существуют на самом деле;
  • самый большой из когда-либо обнаруженных астероидов называется Церера. Он огромен и, если столкнется с Землей, может положить конец существованию человечества;
  • космонавты после полета в космос вырастают до 5 см — из-за отсутствия гравитации позвоночник растягивается на 3 процента, по данным Европейского космического агентства;
  • если два куска металла соприкоснутся в космосе, они соединятся навсегда. Кислород в нашей атмосфере образует тонкий слой окисленного металла на каждой открытой поверхности — он действует как барьер, предотвращающий слипание кусков металла. Но поскольку в космосе нет кислорода, они прилипают — этот процесс называется холодной сваркой;
  • самая большая структура в наблюдаемой Вселенной имеет ширину около 6-10 миллиардов световых лет;
  • раз в 15 лет кольца Сатурна исчезают, если смотреть с Земли;
  • галактика Млечный Путь движется в пространстве со скоростью 552 км в секунду.

— Рави Джоши / Quora.com

Топ 20 интересных фактов о космосе:

  1. Первый космонавт, который при помощи телескопа впервые заглянул в космос, был Галилей.
  2. Цветы, выращенные в космической среде, пахнут иначе. Этот аромат даже взял себе за основу такой известный мировой производитель парфюмерии как Shiseido.
  3. Собака Лайка – является первым земным жителем, который попал в космос, это произошло в 1957 году.
  4. Удивительный факт про воду. При кипении в космосе, вода вместо кучи пузырьков, создаёт один большой пузырь.
  5. Также интересные наблюдения про огонь. Во вселенной огонь не поднимается снизу вверх, как на Земле, а разделяется в разные направления.
  6. Первая женщина космонавт – Валентина Терешкова. Она побывала в космосе в 1963 году.
  7. Вся наша солнечная система, включая планеты, астероиды и кометы, наполняет всего триллионную часть нашей огромной и удивительной вселенной.
  8. В космосе, при употреблении пищи практически не чувствуется её вкус, так как за счет отсутствия гравитации она не попадает на вкусовые рецепторы.
  9. Когда космонавт долго находится во вселенной, он забывает по возвращению домой, что если вещи бросать, они падают, поэтому приходится долго перестраиваться.
  10. В космосе космонавт теряет около 1% мышечной массы
  11. Первым человеком в космосе был Юрий Гагарин, в 1961 году он полностью облетел землю.
  12. Планеты во вселенной вращаются вокруг солнца.
  13. В созвездии Лебедя расположена самая большая звезда в космосе, её размер превышает размер солнца в миллион раз
  14. Тема космоса не прекращает исследоваться, ежегодно больше 100 спутников Земли выводятся в космос.
  15. Планеты, которые известны на сегодняшний день, насчитывают 8 штук, но некоторые ученые считают, что их намного больше.
  16. Солнце настолько тяжелое, что составляет 99,86% массы всей нашей солнечной системы.
  17. Комета «Великая», которая была обнаружена в 1843 году, пролетая над землей, разделила небо на 2 половины своим хвостом, длина которого составила около 800 млн км.
  18. Энергия солнца, которая согревает нас сегодня, зародилась более 30 млн лет назад. Основную часть этого времени ей было необходимо для преодоления оболочки данного светила, и всего лишь 8 минут, для того, чтобы достичь нашей планеты.
  19. Единственная планета, которая вращается против часовой стрелки это Венера.
  20. Метеорит «Гоба», самый крупный метеорит, который падал на землю. Его вес составил около 60 тонн. Теперь это самый крупный кусок метала, который имеет природное происхождение.

Эпизод I. Протозвезды

Протопланетный диск, окружающий молодую солнечную систему в туманности Ориона

Жизненный путь звезд, как и всех объектов макромира и микрокосма, начинается с рождения. Это событие берет свое начало в формировании невероятно огромного облака, внутри которого появляются первые молекулы, поэтому образование называется молекулярным. Иногда употребляется еще и другой термин, непосредственно раскрывающий суть процесса, – колыбель звезд.

Только когда в таком облаке, в силу непреодолимых обстоятельств, происходит чрезвычайно быстрое сжатие составляющих его частиц, имеющих массу, т. е. гравитационный коллапс, начинает формироваться будущая звезда. Причиной этому является выплеск энергии гравитации, часть которой сжимает молекулы газа и разогревает материнское облако. Затем прозрачность образования постепенно начинает пропадать, что способствует еще большему нагреванию и возрастанию давления в его центре. Заключительным эпизодом в протозвездной фазе является аккреция падающего на ядро вещества, в ходе чего происходит рост зарождающегося светила, и оно становится видимым, после того, как давление испускаемого света буквально сметает всю пыль на окраины.

Найди протозвезды в туманности Ориона!

Эта огромная панорама туманности Ориона получена из снимков телескопа Хаббл. Данная туманность одна из самых больших и близких к нам колыбелей звезд. Попробуйте найти в этой туманности протозвезды, благо разрешение этой панорамы позволяет это сделать.

Формирование и эволюция

В настоящее время общепринятой является небулярная теория происхождения Солнечной системы. Согласно этой точке зрения, ее формирование началось около 4,6 млн лет назад. Некое гигантское молекулярное облако подверглось гравитационному коллапсу. Основная часть облака осталась в гравитационном центре коллапса, оставшаяся часть превратилась в диск, из которого в дальнейшем формировались планеты и астероиды.

Причиной возникновения коллапса, вероятно, стало спонтанное уплотнение облака, которое к тому моменту уже содержало остатки водорода, гелия и металлов. В результате воздействия взрывного удара облако стало центром гравитационного коллапса. Далее размеры облака сжимались под воздействием гравитации, а скорость его вращения увеличивалась. Из-за вращения скорости облака перпендикулярно и параллельно оси отличались, что привело к формированию объекта в форме диска.

Вследствие сжатия увеличилось количество столкновений частиц диска, как следствие — увеличивалась его температура. Когда температура диска достигла нескольких тысяч кельвинов, внутренняя часть диска начала светиться — сформировалась протозвезда. Продолжалось дальнейшее увеличение температуры диска, и когда она достигла миллиона кельвинов, произошла термоядерная реакция гелия и водорода, в результате которой диск превратился в обычную звезду, а плотные участки внешних областей диска преобразовались в планеты, вращающиеся вокруг звезды.

Космическое пространство было заполнено пропланетами, количество которых составляло около 100-150 штук. В результате постоянного столкновения и слияния объектов между собой их количество постоянно изменялось.

Говоря о головокружительных фактах:

reddit.com / через businessinsider.com / Nasa / Getty Images

  • НАСА утверждает, что люди могут выжить в космосе без скафандров около 30 секунд;
  • есть радиосигнал, известный как «космический рев», который никто не может объяснить;
  • большинство звезд, которые мы видим в ночном небе, уже умерли;
  • плотность нейтронной звезды настолько высока, что чайная ложка этого вещества в 900 раз превышает массу Великой пирамиды в Гизе;
  • лето на Нептуне длится 40 лет;
  • день на Меркурии эквивалентен примерно 59 земным дням;
  • полная Луна всегда восходит на закате. Новолуние начинается с восходом солнца. Первая четверть — в полдень. И последняя четверть — в полночь;
  • нейтронные звезды могут вращаться со скоростью 600 оборотов в секунду;
  • если попытаться сосчитать звезды в одной нашей галактике со скоростью одна в секунду, это займет около 3000 лет;
  • согласно наиболее точным оценкам, существует 14 известных черных дыр. Ближайшая, Лебедь X-1, расположена в 8000 световых лет от нас;
  • договор, подписанный всеми крупными космическими державами, запрещает претендовать на территорию в космосе или небесные тела — они считаются «общим достоянием человечества»;
  • минимальное количество людей, необходимое для заселения космической колонии с допустимым инбридингом, составляет 160 человек;
  • согласно статье VIII Договора о космосе 1967 года, вы можете быть арестованы за преступление, совершенное в любом месте известной Вселенной.

— Афшин Омидвар / Quora.com

Знаменитости, родившиеся под знаком Близнецов

С 21 мая по 21 июня Солнце находится в знаке Близнецов, соответственно все, кто родился в этот период, приобретают покровительство этого знака. Согласно гороскопу, самые многогранные и авантюрные личности – это именно Близнецы. Список знаменитостей, родившихся под знаком Gemini:

  • Петр I – царь из рода Романовых, первый император Всероссийский, прорубил окно в Европу.
  • Александр Сергеевич Пушкин – знаменитый поэт, прозаик, драматург, Солнце русской поэзии.
  • Роберт Шуман – знаменитый в Германии дирижер, музыкальный критик и композитор.
  • Петр Карл Фаберже – ювелир с мировым именем, изготовил знаменитые яйца Фаберже.
  • Артур Конан Дойл – английский писатель, придумавший образ сыщика Шерлока Холмса
  • Томас Манн – немецкий философ, писатель, лауреат Нобелевской премии в области литературы.
  • Жан Ив Кусто – исследователь Мирового океана.
  • Джон Кеннеди – 35-й американский Президент.
  • Джонни Депп – голливудский актер, режиссер, сценарист и продюсер.
  • Кайли Миноуг – австралийская исполнительница и автор многих хитов.
  • Дарья Донцова – российская писательница, работающая преимущественно в жанре юмористического детектива
  • Мэрилин Монро – американская кинозвезда, секс-символ ХХ века.
  • Анна Курникова – теннисистка, фотомодель.
  • Королева Виктория — последняя представительница Ганноверской династии
  • Мери-Кейт и Эшли Олсен – поп-звезды, которые являются не только астрологическими Близнецами, но и биологическими.

Конец материи – 1030 лет

В общем, мы располагаем Вселенной без звезд, наполненной лишь холодными черными карликами. Вокруг темнота! Возможный наблюдатель заметит лишь мимолетную вспышку из-за взаимодействия какого-то объекта с черной дырой. А затем снова тишина.

Частички материи и двойные черные карлики сливаются, порождая еще больше черных дыр, которые затем объединяются в гигантских чудовищ. Так что будущей материи суждено существовать взаперти у черных дыр.

Даже если ей повезет не попасться, то ее дни все равно сочтены. Протоны лишены стабильности в длительных промежутках. Любая материя, поглощенная дырой, будет распадаться. Протоны станут излучением, оставив после себя лишь слабую дымку электронов, позитронов и нейтрино. В течение 1030 лет все протоны уничтожатся.

Характеристики

Яркость и спектральные характеристики

Проксима Центавра является красная карликовая звезда типа , поскольку он расположен на главной последовательности на диаграмме Герцшпрунга-Рассела и его спектральный тип является M5.5 Ve. Его абсолютная величина — 15.48. Его общая светимость равна 0,17% от светимости Солнца, но в диапазоне длин волн, принадлежащих видимому свету, его светимость составляет всего 0,0056% от светимости Солнца. Фактически, 85% излучаемого им света находится в инфракрасном диапазоне длин волн .

Его видимая величина (11,05) очень мала, что типично для красных карликов, которые слишком тусклые, чтобы их можно было увидеть невооруженным глазом.

Расстояние и диаметр

На основании параллакса от 772.33 ± 2,42 дуговых миллисекунд ( MAS ) , измеренных с помощью Гиппаркос спутника , значение уменьшается до 768,5 ± 0,2  мас в издании 2 данных Gaia, Проксима Центавра находится на расстоянии около 4244 световых лет ( др ) от Солнечная система , или 270 000  астрономических единиц ( а.е. ). Для сравнения, Плутон в его афелии находится в 49  а.е. от Солнца.

Сравнение размеров разных звезд (слева направо: Солнце, α Центавра A, α Центавра B и Проксима Центавра).

В 2002 году VLT использовал интерферометрию для измерения углового диаметра Проксимы Центавра: приблизительно 1,02 ± 0,08 миллисекунды. Как мы знаем , его расстояние, поэтому мы можем определить его реальный диаметр: около 1/7 тыс , что Солнца или в 1,5 раза , что от Юпитера , или ~ 200000  км .

Масса

Используя соотношение масса-светимость , масса Проксимы Центавра оценивается примерно на 12,3% от массы Солнца или в 129 раз больше массы Юпитера. Однако эта оценка косвенная. Прямая оценка серьезной массы звезды опубликована А. Зурло и его сотрудниками виюль 2018после изучения двух событий с гравитационной линзой, линзой из которых была Проксима. Тогда масса оценивается в 0,150+0,062 -0,051 солнечная масса.

Плотность и структура

Мы пришли к выводу, что средняя плотность составляет 56 800  кг / м 3 (плотность 56,8), что явно больше, чем 1,409  кг / м 3 (плотность 1,409) Солнца. Из-за малой массы внутренняя часть звезды полностью конвективна. Таким образом, энергия, производимая внутри него, передается наружу за счет физических движений плазмы, а не радиации. Следовательно, гелий, образующийся при термоядерном синтезе , не накапливается в центре звезды, а циркулирует внутри нее. В то время как Солнце израсходует только 10% своих запасов водорода, когда покинет главную последовательность , Проксима Центавра потребит большую долю до того, как закончится ядерный синтез водорода.

Это явление конвекции создает постоянное магнитное поле. Магнитная энергия, генерируемая этим полем, высвобождается в виде звездных вспышек, подобных солнечным, которые значительно увеличивают общую светимость звезды. Эти вспышки могут достигать размеров звезды и повышать температуру плазмы на 1–5 миллионов Кельвинов , чего достаточно для возникновения рентгеновского излучения .

Хромосфера этой звезды активен и его спектр показывает сильную линию ионизированного магния на длине волны 280 нм . Около 80% поверхности Проксимы Центавра является активным, этот показатель намного выше, чем у поверхности Солнца даже во время пика его солнечного цикла . Даже в периоды низкой активности температура его короны поднимается до 3,5 миллионов Кельвинов против 2 миллионов у Солнца. Однако активность этой звезды относительно невысока по сравнению с активностью других красных карликов. Но это согласуется с большим возрастом Проксимы Центавра, который оценивается в несколько миллиардов лет, что приводит к постепенному снижению скорости вращения звезды.

У Проксимы Центавра относительно слабый звездный ветер , вызывающий потерю массы со скоростью 20% от массы Солнца. Но учитывая тот факт, что он меньше, потеря массы на единицу площади примерно в 8 раз больше, чем у Солнца.

Будущее развитие

Проксима Центавра, как красный карлик , исходя из своей массы, как ожидается, останется на своей основной полосе в течение как минимум 1000 миллиардов лет, если не почти в четыре раза больше этого времени. По мере того, как доля гелия в звезде увеличивается из-за синтеза водорода, она становится меньше и горячее, а ее цвет постепенно меняется с красного на синий. В конце этого периода Проксима Центавра станет заметно ярче, и ее светимость достигнет 2,5% от светимости Солнца, что будет значительно нагревать ее планетную систему за миллиарды лет до его окончания. Как только весь водород будет израсходован, звезда превратится в белого карлика, но не пройдет фазу красного гиганта .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector