Сколько спутников в солнечной системе

Космические аппараты «Викинг»

Основной задачей этой исследовательской программы был поиск на поверхности Марса следов жизни, для чего спускаемые аппараты оснастили самой современной аппаратурой.

Программа «Викинг» выросла из гораздо более амбициозного проекта «Вояджер», предусматривавшего высадку американских астронавтов на Марс, от которой в 1971 г. НАСА отказалось из-за сокращения финансирования. Космический аппарат «Викинг» состоял из орбитального блока, созданного на основе станции «Маринер-8», и спускаемого аппарата.

Главной задачей орбитального блока АМС было доставить спускаемый аппарат на Марс и обеспечить его связь с Землей. Технически намного проще ретранслировать сигнал с Марса на Землю через спутник на ареоцентрической орбите, чем напрямую. Конечно, спускаемые аппараты «Викинг» имели возможность связываться с Землей напрямую, но скорость передачи данных была бы ниже в 10 раз. Кроме того, на ОБ «Викинг» была размещена научно-исследовательская аппаратура: 2 телекамеры, инфракрасный спектрометр для регистрации водяных паров и инфракрасный радиометр для составления тепловой карты планеты. Делая витки над Марсом на высоте 150 км, орбитальный блок не только обеспечивал связь, но и выполнял собственную научную программу исследований. Спускаемый аппарат был оснащен еще более солидно.

Кроме оборудования для биологического эксперимента, он нес на себе две фототелевизионные установки, приборы для метеорологических исследований, газовый хроматограф и рентгеновский флуорисцентный спектрометр. В конце августа — начале сентября 1975 г. АМС «Викинг-1» и «Викинг-2» успешно стартовали с космодрома Канаверал и спустя почти год их спускаемые аппараты сели на поверхность Красной планеты.

Сборка спускаемого аппарата «Викинг»

Оба СА передали на Землю цветные фотографии Марса и взяли пробы грунта, которые показали, что в месте посадки он состоит из глины, содержащей огромное количество железа. Именно этим и объясняется красный цвет поверхности Марса. Спускаемые аппараты проработали до начала 80-х гг., но следов жизни на планете им обнаружить не удалось.

Поиск жизни

Биологические исследования СА «Викинг» включали в себя четыре эксперимента. Эксперимент по газообмену обнаружил высокий уровень выделения кислорода. «Проращивание» марсианского грунта в питательном бульоне сперва обнаружило газы и увеличение двуокиси углерода, почти как у земной почвы, но затем все быстро прекратилось. Регистрация поглощения изотопа углерода 14С также не дала однозначных результатов — на Земле микроорганизмы хорошо усваивают углекислый газ, но на Марсе этот эксперимент дал неоднозначный результат — углерод то усваивался, то нет. Четвертый эксперимент, по обнаружению органических веществ, дал отрицательный результат. В итоге, был сделан вывод, что жизни на Марсе нет.

Как они работают?

В своей работе ПринципИсаак Ньютон (1643-1727) установил, что необходимо для вывода спутника на орбиту, хотя вместо спутника он использовал в качестве примера пушечное ядро, выпущенное с вершины холма.

Выстреливая с определенной горизонтальной скоростью, пуля следует по обычной параболической траектории. С увеличением скорости горизонтальный вылет становится все больше и больше, что было ясно. Но заставит ли пуля выйти на орбиту вокруг Земли при определенной скорости?

Земля изгибается от линии, касающейся поверхности, со скоростью 4,9 м на каждые 8 ​​км. Любой объект, выпущенный из состояния покоя, упадет на 4,9 м за первую секунду. Следовательно, при горизонтальном выстреле с пика со скоростью 8 км / с пуля упадет на 4,9 м за первую секунду.

Но Земля за это время также опустится на 4,9 м, так как она изгибается под пушечным ядром. Он продолжает горизонтальное движение, покрывая 8 км, и в течение этой секунды останется на той же высоте по отношению к Земле.

Естественно, то же самое происходит через следующую секунду и во все последующие секунды, превращая пулю в искусственный спутник без какой-либо дополнительной тяги, пока нет трения.

Однако трение, вызванное сопротивлением воздуха, неизбежно, поэтому необходима ракета-носитель.

Ракета поднимает спутник на большую высоту, где более тонкая атмосфера оказывает меньшее сопротивление и обеспечивает необходимую горизонтальную скорость.

Такая скорость должна быть больше 8 км / с и меньше 11 км / с. Последний является космическая скорость. Спроектированный с такой скоростью, спутник отказался бы от гравитационного воздействия Земли, уходя в космос.

Энцелад

Согласно некоторым исследователям, Энцелад, один из спутников Сатурна, может не только стать отличным местом для колонизации и наблюдения за планетой, но и является чуть ли не самым вероятным местом, которое уже поддерживает жизнь.

Энцелад покрыт льдом, однако наблюдения зондами с космоса показали геологическую активность на луне и в частности вырывающиеся с ее поверхности гейзеры. Космический аппарат «Кассини» собрал образцы и определил наличие жидкой воды, азота и органического углерода. Эти элементы, а также тот источник энергии, который выбросил их в космос, являются важными «кирпичиками жизни». Поэтому следующим шагом для ученых будет обнаружение признаков более сложных элементов и, возможно, организмов, которые могут скрываться под ледяной поверхностью Энцелада.

Исследователи считают, что лучшим местом для установки колонии будут зоны, рядом с которыми были замечены эти гейзеры, — огромные разломы на поверхности ледяной шапки южного полюса. Здесь замечена весьма необычная тепловая активность, эквивалентная работе примерно 20 угольных электростанций. Другими словами, для будущих колонистов здесь имеется подходящий источник тепла.

На Энцеладе имеется множество кратеров и разломов, только и ждущих, когда их начнут изучать. К сожалению, атмосфера спутника очень разряжена, а низкая гравитация может создать некоторые проблемы в освоении этого мира.

1 Ганимед

  • Диаметр: 5268 км
  • Спутник: Юпитера
  • Дата открытия: 7 января 1610 г.
  • Период обращения: 7,154 суток
  • Масса: 1,482 × 1023 кг
  • Ускорение свободного падения: 1,428 м/с2
  • Температура поверхности: −203 °C … −121 °C

Ганимед — один из галилеевых спутников Юпитера, седьмой по расстоянию от него среди всех его спутников и крупнейший спутник в Солнечной системе. Его диаметр равен 5268 километрам, что на 2 % больше, чем у Титана и на 8 % больше, чем у Меркурия. При этом масса Ганимеда составляет всего 45 % массы Меркурия, но среди спутников планет она рекордно велика. Луну Ганимед превышает по массе в 2,02 раза. Совершая оборот вокруг Юпитера примерно за семь дней, Ганимед участвует в орбитальном резонансе 1:2:4 с двумя другими его спутниками — Европой и Ио.

Ганимед открыл Галилео Галилей, который увидел его 7 января 1610 года. Вскоре Симон Марий предложил назвать его в честь виночерпия Ганимеда. Первым космическим аппаратом, изучавшим Ганимед, стал «Пионер-10» в 1973 году. Намного более детальные исследования провели аппараты программы «Вояджер» в 1979 году. Космический аппарат «Галилео», изучавший систему Юпитера начиная с 1995 года, обнаружил подземный океан и магнитное поле Ганимеда. В 2012 году Европейское космическое агентство одобрило новую миссию для исследований ледяных спутников Юпитера — JUICE; её запуск планируется на 2022 год, а прибытие в систему Юпитера — на 2030 год.

Ганимед является единственным спутником в Солнечной системе, обладающим собственным магнитным полем. Благодаря этому над его полярными областями можно очень часто наблюдать северные сияния. Помимо этого, есть подозрения, что под поверхностью Ганимеда может скрываться жидкий океан. Спутник обладает разряженной атмосферой, в состав которой входит кислород. И хотя его крайне мало для поддержания той жизни, которую мы знаем, потенциал для терраформирования у спутника имеется.

Нравится

Комментарии:

Международная космическая станция

Известная как МКС (Международная космическая станция), это орбитальная исследовательская лаборатория, управляемая пятью космическими агентствами по всему миру. Пока это самый большой из существующих искусственных спутников.

В отличие от остальных спутников, на космической станции находятся люди. Помимо фиксированного экипажа из минимум двух космонавтов, станцию ​​посещали даже туристы.

Назначение станции в первую очередь научное. Он имеет 4 лаборатории, в которых исследуются эффекты невесомости и проводятся астрономические, космологические и климатические наблюдения, а также различные эксперименты в области биологии, химии и влияния излучения на различные системы.

Таблица частот

Частоты вещания телеканалов в системе Триколор ТВ периодически меняются, на 2021 год действуют частоты, приведенные ниже.

Справка. Код активации представляет собой определенный сигнал со спутника, который отправляется на ресивер. Он предназначен непосредственно для раскодирования оплаченных пользователем каналов, без него воспользоваться услугами оператора невозможно.

  1. Для того, чтобы в полной степени получать услуги оператора Триколор ТВ после подключения необходимо активировать оборудование.
  2. Код активации Триколор состоит из 20 цифр, которые следует вводить без пробела.
  3. Как правило, после первой отправки кода активации для оборудования его обновление в дальнейшем происходит 1 раз в 6-8 часов согласно графику.
  4. Код отправляется со спутника автоматически или же может быть отправлен специалистом службы поддержки при обращении абонента.
  5. Пользователь может самостоятельно произвести отправку ключей активации, воспользовавшись сервисом «Личный кабинет» в разделах «Мои услуги» и «Помощь».
  6. Непосредственно код активации поступает на устройство в течение суток, но по статистике это происходит быстрее, в течение 8 часов. Для корректной работы пользователю следует оставить приёмник включенным на одном из кодированных телеканалов до появления изображения.

Выделяют 4 ситуации, при возникновении которых требуется повторная отправка кода активации:

  • первое подключение спутникового телевидения (в подобных ситуациях отправкой ключа непосредственно занимается продавец);
  • приобретение нового ресивера вместо устаревшей модели;
  • неожиданный сбой в работе оборудования;
  • длительный перерыв в работе оборудования.

Исследования естественных спутников

Вид на Землю с орбиты Луны, снимок астронавтов Аполлона-11 от 20 июля 1969 года.

Исследования естественных спутников планет Солнечной системы интересовали умы ученых-астрономов с давних времен. С момента изобретения первого телескопа люди активно изучали эти небесные объекты. Прорыв развития цивилизации позволили не только открыть колоссальное количество спутников различных планет Солнечной системы, но и ступить человеку на главный, ближайший к нам, спутник Земли – Луну. 21 июля 1969 года американский астронавт Нил Армстронг вместе с командой космического корабля «Аполлон-11» впервые ступил на поверхность Луны, что вызвало ликование в сердцах тогдашнего человечества и до сих пор считается одним из самых важных и значительных событий в освоении космоса.

Ганимед, Каллисто, Ио и Европа

Помимо Луны, ученые активно занимаются исследованием других естественных спутников планет Солнечной системы. Для этого астрономы используют не только методы визуального и радиолокационного наблюдения, но и задействуют современные космические аппараты, а также искусственные спутники. К примеру, космический аппарат «Вояджер» впервые передал на Землю снимки нескольких крупнейших спутников Юпитера: Каллисто, Ио, Ганимеда, Европы. В частности, именно благодаря этим снимкам ученые смогли зафиксировать наличие вулканов на спутнике Ио, и океана на Европе.

На сегодняшний день всемирное сообщество исследователей космоса продолжает активно заниматься исследованием естественных спутников планет Солнечной системы. Помимо различных государственных программ существуют также частные проекты, направленные на изучение этих космических объектов. В частности всемирно известная американская компания «Google» сейчас ведет разработку туристического лунохода, на котором многие желающие могли бы совершить прогулку по Луне.

Искусственные спутники

Первый искусственный спутник Земли «Спутник 1» вывели на геоцентрическую орбиту. Сейчас на ней вращается больше 2500 аппаратов. Чтобы классифицировать высоты, используют низкую околоземную орбиту, среднюю и высокую.

Классификация высоты

  • Низкая околоземная орбита (LEO): от 0-2000 км.
  • Средняя орбита Земли (MEO): от 2000 км – 35786 км. Ее также именуют промежуточной круговой орбитой.
  • Высокая орбита (HEO): выше 35786 км.

Классификация наклона

  • Наклонная орбита: наклон относительно экваториальной плоскости не равняется нулю.
  • Полярная орбита: простирается над полюсами планеты на каждом обороте. Наклон – 90 градусов.
  • Полярная солнечная синхронная орбита: почти полярная, проходящая через экватор в одно и то же местное время на каждом проходе. Удобная для фотографирования, потому что тени будут почти одинаковыми на каждом проходе.

Классификация эксцентриситета

  • Круговая орбита: эксцентриситет 0, а траектория проходит по кругу.
  • Гомановская траектория: орбитальный маневр, перемещающий космический корабль с одной круговой орбиты на другую с использованием двух двигательных импульсов.
  • Эллиптическая орбита: эксцентриситет больше 0 и меньше 1 (эллипс).
  • Геосинхронная орбита переноса: эллиптическая орбита, где перигей находится на высоте Низкой околоземной орбиты (LEO), а апогей – на высоте геосинхронной орбиты.
  • Геостационарная орбита переноса: эллиптическая орбита, где перигей находится на высоте околоземной орбиты (LEO) и апогей – на геостационарной.
Введение в равномерное круговое движение и гравитацию
  • Кинематика равномерного кругового движения
  • Динамика равномерного кругового движения
  • Осуществление виражей на изогнутом шоссе
Неравномерное круговое движение
Скорость, ускорение и сила
  • Вращательный угол и угловая скорость
  • Центростремительное ускорение
  • Центростремительная сила
Типы сил в природе
  • Приливы
  • Сила Кориолиса
  • Другие геофизические применения
Закон универсальной гравитации Ньютона
  • Закон всемирного тяготения
  • Гравитационное притяжение сферических тел: однородная сфера
  • Вес Земли
Законы Кеплера
  • Первый закон Кеплера
  • Второй закон Кеплера
  • Третий закон Кеплера
  • Орбитальные маневры
  • Спутники
Гравитационно потенциальная энергия
Энергосбережение
Угловые и линейные величины

Будущее спутниковой отрасли

Главные проблемы, которые препятствуют развитию спутниковых технологий:

  • сложности для входа на рынок частных компаний;
  • зависимость от госкорпораций и государственной космической программы;
  • сложный и дорогой цикл разработок;
  • жесткое регулирование;
  • космическая отрасль нуждается в больших инвестициях, — частных и государственных — чтобы вести научные исследования и инженерные разработки.

Самыми перспективными, по словам представителей «Глонасса», среди аппаратов выглядят малые и средние спутники широкого применения с межспутниковыми линиями связи и долгим сроком службы. Главные тренды здесь — полная цифровизация процесса, использование COTS-компонентов (Commercial off-the-shelf, готовый коммерческий продукт. — РБК Тренды) и ПО с открытым исходным кодом.

Для запусков спутников все чаще используют малые ракеты или самолеты-носители, запуская сразу большое количестве аппаратов разных компаний.

Для обработки данных со спутников все более востребованной становится Edge-технология. Она подразумевает, что все вычислительные операции совершаются максимально близко к источнику данных — то есть самим спутником — чтобы повысить качество и скорость передачи. Это становится возможным благодаря упрощению требований к электропитанию аппаратов, ТТХ и устойчивости к радиации.

Роль спутников Юпитера в развитии астрономии

На снимке слева направо Ганимед, Каллисто, Ио и Европа. Эти спутники входят в число крупнейших в Солнечной системы и могут наблюдаться в небольшой телескоп.

Юпитер стал первой планетой Солнечной системы, у которой были обнаружены сателлиты, если не считать Луну – спутник Земли. Сделал это Галилео Галилей, который в 1610 году с помощью телескопа обнаружил рядом с гигантом маленькие звездочки, которые вели себя необычно по сравнению с другими небесными объектами. Понаблюдав за их перемещениями в течение нескольких дней, он понял, что они вращаются вокруг Юпитера, а значит, являются не самостоятельными планетами, а его спутниками. Так были открыты Ганимед, Европа, Ио и Каллисто.

Есть ли еще планеты

Астрологи и астрофизики уже много десятилетий занимаются поиском и открытием экзопланет. Так называют планеты, находящиеся за пределами солнечной системы. Активно в этом помогают телескопы, размещенные на орбите Земли, которые делают снимки и стараются дать точное представление, какого цвета планеты еще существуют. Основная цель этих трудов — найти в космическом безмолвии обитаемую планету, похожую на Землю.

В параметрах поиска основным критерием считается свечение планеты, а точнее отражение ее свечения от звезды, по образу Земли. Бело-голубой цвет не единственный оттенок. По мнению ученых, планета с излучением красного спектра также может быть обитаема. Отражение большей части Земли происходит от водной поверхности это бело-голубое свечение, а отражение от континента с растительностью будет иметь красноватый оттенок.

Пока обнаруженные экзопланеты по своим характеристикам очень похожи на Юпитер.

> Планеты

Исследуйте все планеты Солнечной системы
по порядку и изучите названия, новые научные факты и интересные особенности окружающих миров с фото и видео.

На территории Солнечной системы проживает 8 планет: Меркурий, Венера, Марс, Земля, Юпитер, Сатурн, Уран и Нептун. Первые 4 относятся к внутренней Солнечной системе и считаются планетами земной группы. Юпитер и Сатурн – большие планеты Солнечной системы и представители газовых гигантов (огромные и наполнены водородом и гелием), а Уран и Нептун – ледяные гиганты (крупные и представлены более тяжелыми элементами).

Ранее девятой планетой считался Плутон, но с 2006 года перешел в разряд карликовых. Впервые эта карликовая планета была найдена Клайдом Томбом. Сейчас это один из крупнейших объектов в поясе Койпера – скопление ледяных тел на внешнем краю нашей системы. Плутон потерял планетарный статус после того, как в МАС (Международный Астрономический Союз) пересмотрели само понятие.

Согласно решению МАС планетой Солнечной системы является тело, которое выполняет орбитальный проход вокруг Солнца, наделена достаточной массой, чтобы сформироваться в виде сферы и очистить территорию вокруг себя от посторонних объектов. Плутон не смог соответствовать последнему требованию, поэтому и стал карликовой планетой. Среди других подобных объектов можно вспомнить Цереру, Макемаке, Хаумеа и Эриду.

При небольшой атмосфере, суровыми поверхностными особенностями и 5-ю спутниками, Плутон считается сложнейшей карликовой планетой и одной из удивительнейших планет в нашей Солнечной системе.

Но ученые не теряют надежды найти загадочную Девятую планету — , после того, как в 2016 году объявили о гипотетическом объекте, влияющем гравитацией на тела из пояса Койпера. По параметрам она в 10 раз превышает земную массу и в 5000 раз массивнее Плутона. Ниже представлен список планет Солнечной системы с фото, названиями, описанием, детальными характеристиками и интересными фактами для детей и взрослых.

Планета Диаметр относительно,Земли Масса, относительно Земли Орбиталь­ный радиус, а. е. Период обращения, земных лет Сутки,
относительно Земли
Плотность, кг/м³ Спутники
0,382 0,06 0,38 0,241 58,6 5427 нет
0,949 0,82 0,72 0,615 243 5243 нет
1,0 1,0 1,0 1,0 1,0 5515 1
0,53 0,11 1,52 1,88 1,03 3933 2
0,074 0,000013 2,76 4,6 0,46 ~2000 нет
11,2 318 5,20 11,86 0,414 1326 67
9,41 95 9,54 29,46 0,426 687 62
3,98 14,6 19,22 84,01 0,718 1270 27
3,81 17,2 30,06 164,79 0,671 1638 14
0,098 0,0017 39,2 248,09 6,3 2203 5
0,032 0,00066 42,1 281,1 0,03 ~1900 2
0,033 0,00065 45,2 306,28 1,9 ~1700 нет
0,1 0,0019 68,03 561,34 1,1 ~2400 1

Земные планеты Солнечной системы

Первые 4 планеты от Солнца именуют планетами земного типа, потому что их поверхность скалистая. У Плутона также твердый поверхностный слой (замерзший), но он относится к планетам карликового типа.

Планеты газовые гиганты Солнечной системы

Во внешней Солнечной системе проживают 4 газовых гиганта, так как они достаточно огромные и газообразные. Но Уран и Нептун отличаются, так как в них больше льда. Поэтому их именуют также ледяными гигантами. Однако всех газовых гигантов объединяет один момент: все они состоят из водорода и гелия.

МАС выдвинула определение планеты:

  • Объект должен вращаться вокруг Солнца;
  • Иметь достаточную массу, чтобы приобрести форму шара;
  • Очистить свой орбитальный путь от посторонних объектов;

Плутон не смог соответствовать последнему требованию, так как делит орбитальный путь с огромным количеством тел из пояса Койпера. Но не все были согласны с определением. Однако на арене появились такие карликовые планеты как Эрида, Хаумеа и Макемаке.

Также между Марсом и Юпитером проживает Церера. Ее заметили в 1801 году и посчитали планетой. Некоторые до сих пор считают её 10-й планетой Солнечной системы.

Как сейчас обстоят дела со спутниковым интернетом

Недорогой широкополосный интернет в труднодоступных местах за счет группировки спутников ━ ближайшая американская реальность. Проекты спутниковой связи существуют уже не один десяток лет. Согласно UCS Satellite Database, в начале 2020 года на орбите Земли более 2 600 активных спутников.

Новое поколение коммуникационных спутников на негеосинхронных орбитах (NGSO) — низкой околоземной орбите (LEO) и средней околоземной орбите (MEO) — активно запускалось в космос за последний год. Аналитики McKinsey прогнозируют производство и запуск спутников в беспрецедентных масштабах.

И даже в случае провала крупнейших телеком-проектов на низкой околоземной орбите в течение ближайших десяти лет будет запущено 50 тыс. активных спутников.

Ио

Ио — третий по величине спутник Юпитера и четвертый в Солнечной системе. Его диаметр равен 3 643 км. Первым спутник обнаружил Галилео Галилей в 1610 году. Это самое вулканически активное космическое тело наряду с Землей. Его поверхность в основном состоит из пойм жидких пород и лавовых озер. Ио расположен примерно в 422 000 км от Юпитера, и делает полный оборот вокруг планеты за 1,77 земных дня. Спутник имеет пятнистый вид с доминированием белого, красного, желтого, черного и оранжевого цветов. В атмосфере Ио преобладает двуокись серы. Спутник был назван в честь нимфы из древнегреческой мифологии, которая была соблазнена Зевсом. Под поверхностью Ио находится железное ядро и внешний слой из силикатов.

Исследования

Самым изученным планетарным соседом является Луна. В 60-70 гг между Советским Союзом и США началась целая гонка за освоение земного спутника. Благодаря ей мы имеет самую детальную информацию о ближайшем соседе.

Попытки высадить зонды на поверхность марсианских Фобоса и Деймоса оказались провальными. Орбитальным марсианским станциям удалось лишь сделать снимки поверхности лун.

Большинство юпитерианских
лун, в том числе и 4 галилеевских, было обнаружено при помощи наземных и
орбитальных телескопов. Трое спутников также были найдены Вояджером-2 при
пролете рядом с планетой.

Космический аппарат
Вояджер-2 также помог в обнаружении лун около Сатурна, Урана и Нептуна. Он
собрал наиболее точную информацию о поверхности спутников и их главных
физико-химических параметрах.

Как развивается спутниковый интернет в России

Помимо запусков спутников OneWeb, Россия еще в 2019 году планировала развивать сеть спутниковой связи совместно с Китаем. В рамках программы предполагалось сотрудничество спутниковой системы «Гонец» (дочерняя компания госкорпорации «Роскосмос») и Китайской корпорации аэрокосмической науки и промышленности (CASIC).

Проект Hongyun предполагает развертывание сети спутников на орбите высотой 1 000 км, чтобы сигнал был доступен из любой точки мира. Часть китайских спутников предполагалось запустить при помощи российских ракет-носителей «Союз» с самарского центра «Прогресс». Завершение программы намечено на 2025 год.

В июле 2020-го на целевую геопереходную орбиту (высота около 200 км) доставили спутники связи «Экспресс-80» и «Экспресс-103». Они построены на базе более ранних моделей в партнерстве с Thales Alenia Space. Спутники будут обеспечивать не только интернет, но и фиксированную и подвижную связь, а также цифровое ТВ.

Футурология

Бизнес в космосе: предприниматели рассказали о трендах и будущем отрасли

С 2022 по 2024 годы российские власти планируют развернуть военные системы связи и разведки с помощью спутников. Они будут отслеживать ракетные пуски и малые космические аппараты других стран. Программу запустят в рамках создания Единой космической системы (ЕКС). В 2023 году, после запуска третьего этапа, начнется развертывание высокоорбитальной космической системы разведки.

8 Титания

  • Диаметр: 1577 км
  • Спутник: Урана
  • Дата открытия: 11 января 1787 г.
  • Период обращения: 8,706 суток
  • Масса: 3,527 × 1021 кг
  • Ускорение свободного падения: 0,379 м/с2
  • Температура поверхности: −213 °C … −184 °C

Титания — крупнейший спутник Урана и восьмой по размеру спутник в Солнечной системе. Открыт Уильямом Гершелем 11 января 1787 года (через 6 лет после открытия им Урана). Назван в честь королевы фей из произведения Уильяма Шекспира «Сон в летнюю ночь». Четвёртый по отдалённости от Урана среди пяти его крупных спутников. Орбита Титании полностью находится внутри магнитосферы Урана.

Как и все крупнейшие спутники Урана, Титания, вероятно, образовалась из аккреционного диска, окружавшего планету во времена её формирования. Титания состоит из примерно равного количества камня и льда и, вероятно, дифференцирована на каменное ядро и ледяную мантию. На их границе, возможно, есть слой жидкой воды.

Единственные имеющиеся изображения Титании крупным планом были получены «Вояджером-2» во время исследований системы Урана в 1986 году. Никакой другой космический аппарат никогда не посещал Уран или Титанию. Концептуальные проекты для подобных миссий в настоящее время рассматриваются.

Спутники Юпитера

На сегодняшний день у гиганта Юпитера 67 спутников – больше, чем у прочих планет. Самые крупные из них считаются достижением Галилео Галилея, так как были открыты им в 1610 году.

Среди небесных тел, вращающихся около Юпитера, стоит отметить:

  • Адрастею, диаметром 250×147×129 км и массой ~3,7·1016 кг;
  • Метиса — размеры 60×40×35 км, вес ~2·1015 кг;
  • Фиву, обладающую масштабами 116×99×85 и массой ~4,4·1017 кг;
  • Амальтею — 250×148×127 км, 2·1018 кг;
  • Ио с весом 9·1022 кг при 3660×3639×3630 км;
  • Ганимеда, который при массе 1,5·1023 кг имел диаметр 5263 км;
  • Европу, занимающую 3120 км и весящую 5·1022 кг;
  • Каллисто, при диаметре 4820 км имеющего массу 1·1023 кг.

Первые спутники были открыты в 1610 году, некоторые с 70-х по 90-е годы, затем в 2000, 2002, 2003. Последние из них обнаружены в 2012 году.

2 Титан

  • Диаметр: 5152 км
  • Спутник: Сатурна
  • Дата открытия: 25 марта 1655 г.
  • Период обращения: 15,945 суток
  • Масса: 1,345 × 1023 кг
  • Ускорение свободного падения: 1,352 м/с2
  • Температура поверхности: −179 °C

Титан — крупнейший спутник Сатурна, второй по величине спутник в Солнечной системе, является единственным, кроме Земли, телом в Солнечной системе, для которого доказано стабильное существование жидкости на поверхности, и единственным спутником планеты, обладающим плотной атмосферой. Титан стал первым известным спутником Сатурна — в 1655 году его обнаружил голландский астроном Христиан Гюйгенс.

При сопоставимых размерах с Меркурием и Ганимедом, Титан обладает обширной атмосферой, толщиной более 400 км. По современным оценкам атмосфера Титана состоит на 95 % из азота и оказывает давление на поверхность в 1,5 раза больше, чем атмосфера Земли. Наличие метана в атмосфере приводит к процессам фотолиза в верхних слоях и образованию нескольких слоёв углеводородного «смога», из-за чего Титан является единственным спутником в Солнечной системе, поверхность которого невозможно наблюдать в оптическом диапазоне.

Так как Сатурн и его спутники находятся вне зоны обитаемости, то возникновение высокоорганизованной жизни (аналогичной земной) гипотетически невозможно, однако возможность возникновения простейших организмов не исключается учёными. Плотная атмосфера из азота и наличие органических соединений является объектом для исследования экзобиологами, так как похожие условия могли существовать на молодой Земле. Однако слишком низкие температуры предотвращают пребиотическое направление развития, в отличие от Земли. Однако в очень далёком будущем условия на Титане могут значительно измениться. Через 6 млрд лет Солнце значительно увеличится в размерах и станет красным гигантом, температура на поверхности спутника увеличится до −70 °C, достаточно высокой для существования жидкого океана из смеси воды и аммиака. Подобные условия просуществуют несколько сотен миллионов лет, этого вполне достаточно для развития относительно сложных форм жизни.

Ио

Ио — третий по величине спутник Юпитера и четвертый в Солнечной системе. Его диаметр равен 3 643 км. Первым спутник обнаружил Галилео Галилей в 1610 году. Это самое вулканически активное космическое тело наряду с Землей. Его поверхность в основном состоит из пойм жидких пород и лавовых озер. Ио расположен примерно в 422 000 км от Юпитера, и делает полный оборот вокруг планеты за 1,77 земных дня. Спутник имеет пятнистый вид с доминированием белого, красного, желтого, черного и оранжевого цветов. В атмосфере Ио преобладает двуокись серы. Спутник был назван в честь нимфы из древнегреческой мифологии, которая была соблазнена Зевсом. Под поверхностью Ио находится железное ядро и внешний слой из силикатов.

Общие сведения

Естественные спутники планет Солнечной системы с давних времен вызывали живой интерес у астрономов. По сегодняшний день ученые занимаются их изучением. Что же представляют собой эти космические объекты?

Естественные спутники планет – это космические тела естественного происхождения, которые вращаются вокруг планет. Наиболее интересными для нас представляются естественные спутники планет Солнечной системы, так как они находятся в непосредственной близости от нас.

Сравнительные размеры крупнейших спутников Солнечной системы и планет Земной группы.

В Солнечной системе всего две планеты не имеют естественных спутников. Это Венера и Меркурий. Хотя предполагается, что ранее у Меркурия естественные спутники были, однако данная планета в процессе своей эволюции их лишилась. Что касается остальных планет Солнечной системы, то каждая из них имеет как минимум один естественный спутник. Самый известный из них – Луна, которая является верным космическим попутчиком нашей планеты. Марс имеет 2 спутника, Юпитер – , Сатурн – , Уран – , Нептун – . В числе этих спутников мы можем обнаружить, как весьма непримечательные объекты, состоящие в основном из камня, так и весьма интересные экземпляры, которые заслуживают отдельного внимания, и о которых мы будем говорить ниже.

Особенности настройки

Прежде чем узнавать про частоты Триколор ТВ, нужно правильно подключить и настроить всё оборудование. Начинать нужно с места размещения антенны. Чтобы принимать все каналы, включая ТНВ. Позднее, Вам нужно будет познакомиться с большим количеством настроек, включая lnb и другие. Размещая антенну, следите, чтобы она смотрела на юг, и чтобы там не было высоких преград. В идеале, перед антенной должен быть чистый горизонт. Тогда настройка принесет свои плоды.

Очень хорошо, если у вас будет возможность регулировать положение тарелки во время эксплуатации, чтобы ловить более чистый сигнал. Такая настройка не просто гибкая, но и оправдана эксплуатационными нуждами.

В инструкции будет указано, как собирать антенну, после чего нужно будет переходить к следующему этапу ― настройка вещания и таблица каналов.

С lnb вы столкнётесь, когда будете настраивать мультифид. Для того чтобы всё работало идеально, значение lnb должно быть «одиночный». При присвоении lnb другого значения, настройка на Триколор невозможна.

Многие установки делаются вручную и не могут быть отрегулированы автоматически. Так, вам нужно будет самостоятельно настроить всю вашу систему на приём конкретного спутника, и начинается всё с системной настройки. Здесь значение Номера должно быть 1

При этом важно соблюдать значение нижней строки 10750, верхней 10750. Они по умолчанию могут быть разными

Однако вам нужно привести эти частоты к такому единому виду. При необходимости, измените значения вручную.

Далее, настройте ручные установки. Выберите номер антенны и частоту, как будет указано в инструкции. В данном случае 1, Eutelsat W4, 12226. Скорость для потока выберите 27500. Это оптимальная величина, с которой удобно работать. После этих нехитрых манипуляций нужно искать сигнал и ориентироваться по световым индикаторам. Особых трудностей на данном этапе не возникает, но следите, чтобы у зеркала был полный обзор, и вы его не загораживали.

Спутники несостоявшейся звезды

Визуализация движения спутников Юпитера

На сегодняшний день их количество оценивается цифрой 79, но она достаточно условна и ученые говорят, что фактически их не меньше ста. 50 спутников уже имеют собственные имена – по традиции их называют женскими именами в честь возлюбленных и многочисленных дочерей Юпитера (Зевса). Божества в древние времена особой нравственностью и разборчивостью не отличались, поэтому среди сателлитов Юпитера оказался и Ганимед – прекрасный юноша, понравившийся всемогущему громовержцу и потому похищенный им. Остальные 29 небесных тел, открытые относительно недавно, собственных имен пока не имеют.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector