Звезды карлики, их типы и отличия

Атмосфера холодных звезд

Еще одним признаком, по которому можно определить местонахождение таких звезд – это наличие метана. Этот газ не может накапливаться на обычных звездах из-за их высоких температур. Однако коричневые карлики относительно холодны, и поэтому метан легко накапливается в их атмосфере. Метановая атмосфера такого типа звезд является очень плотной.

На их поверхности бушуют неистовые ветры, и сюда никогда не проникают лучи других звезд, соответственно, погода никогда не бывает благоприятной. Поэтому на фото коричневые карлики выглядят негостеприимно. Исследователи космоса никогда не приближаются к этим звездам.

Посадить корабль на их поверхность невозможно. Сила их тяжести настолько чудовищна, что астронавты сразу же погибли бы в ее тисках еще до того, как корабль превратился бы в груду металла.

Многие из бурых карликов активно формируют около себя газопылевые облака, из которых, в свою очередь, формируются планеты. Такая планетная система недавно была обнаружена в созвездии Хамелеона.

Что такое белый карлик: звезда или фантом?

Только недавно, в XX веке ученым стало понятно, что белый карлик – это все, что осталось в космосе от обычной звезды. Изучение звезд с точки зрения термоядерной физики дало представление о процессах, которые бушуют в недрах небесных светил. Звезды, образовавшиеся в результате взаимодействия сил гравитации, представляют собой колоссальный термоядерный реактор, в котором постоянно происходят цепные реакции деления ядер водорода и гелия. В таких сложных системах темпы эволюции компонентов неодинаковы. Огромные запасы водорода обеспечивают жизнь звезды на миллиарды лет вперед. Термоядерные водородные реакции способствуют образованию гелия и углерода. Следом за термоядерным синтезом в дело вступают законы термодинамики.


Белый карлик


Схема термоядерного синтеза звезды

Термоядерный синтез истощает звезду. Водород иссякает, а гелий, как более массивный компонент может проэволюционировать дальше, достигнув нового состояния. Все это приводит к тому, что сначала красные гиганты образуются на месте обычной звезды, и звезда покидает главную последовательность. Таким образом, небесное светило, встав на путь своего медленного и неизбежного старения постепенно трансформируется. Старость звезды – это долгий путь в небытие. Все это происходит очень медленно. Белый карлик является небесным светилом, с которым вне пределов главной последовательности, происходит неизбежный процесс угасания. Реакция синтеза гелия приводит к тому, что ядро стареющей звезды сжимается, светило окончательно теряет свою оболочку.

Действительно ли коричневые карлики создают свои планетные системы?

Впрочем, говорить том, что коричневые карлики действительно могут формировать собственные планетные системы подобно звездам, пока сложно.

Например, обнаруженные супер-Юпитеры планетарной массы 2M1207B и 2MASS J044144, которые вращаются вокруг коричневых карликов на больших орбитальных расстояниях, судя по всему вполне могут быть образованы посредством аккреции, а не из газопылевого облака, и поэтому вообще не являются в полной мере планетами, а скорее могут оказаться “субкоричневыми карликами”, т.е. “младшими братьями” центрального тела системы.

Первое открытие маломассивного спутника на орбите коричневого карлика (ChaHα8) при малом орбитальном расстоянии с помощью метода лучевых скоростей положило начало обнаружению планет вокруг коричневых карликов на орбитах в несколько астрономических единиц или меньше. Однако и тут нас ждало скорее не открытие, а повод подискутировать: соотношением масс между спутником и главным объектом ChaHα8 составило всего около 0,3, т.е. эта система больше напоминает не планетную систему, а двойную звезду.

Позже, в 2013 году, на орбите коричневого карлика был обнаружен первый компаньон планетарной массы с относительно малой орбитой. В 2015 году была найдена первая планета земной массы на орбите коричневого карлика, OGLE-2013-BLG-0723LBb, имеющая массу примерно как у Венеры.

Обнаруженные диски вокруг коричневых карликов имеют многие из тех же функций, что и диски вокруг звёзд. Таким образом, предполагается, что из них с течением времени всё же будут сформированы планеты, обращающиеся вокруг коричневых карликов. При этом, интересно, что учитывая малую массу дисков коричневых карликов, большинство планет будет планетами земной группы, а не газовыми гигантами.

Косвенным доказательством этому служит простой факт: если бы газовый гигант вращался вокруг коричневого карлика и последний лежал бы в плоскости его орбиты, то его легко было бы обнаружить транзитным методом, потому что они имеют примерно одинаковый диаметр. Зона аккреции для планет вокруг коричневого карлика расположена очень близко к самому коричневому карлику, поэтому приливные силы будут оказывать большое влияние на сформированные планеты.

Таким образом, сам по себе процесс формирования “настоящих” планет у “ненастоящих” звезд скорее всего в наше время уже является доказанным фактом. Планеты, вращающиеся вокруг коричневых карликов, скорее всего, будут каменистыми планетами, однако испытывающими серьезный дефицит воды. Исключение составляют сформированные на внешнем краю газопылевого диска планеты, которые в силу более низкой температуры аккреции теоретически могут сохранить часть воды в своём составе.

Как были открыты звезды-белые карлики

У Бесселя не было причин сомневаться в законах Ньютона. Если тело не движется по прямой, значит, на него действует некая сила. А единственная сила, влияющая на движение небесных тел,- сила тяготения. Значит, Сириус притягивается каким-то другим телом, находящимся поблизости от него. Поскольку траектория движения Сириуса подобна синусоиде, значит, невидимое тело постоянно находится около звезды, то с одной то с другой стороны. Иными словами, невидимое тело обращается вокруг Сириуса, заставляя и его описывать кривую линию.

Двойные звезды пары Сириус А-B. Сириус А можно найти без труда, а вот белый карлик Сириус B я выделил кружком

Фридрих Бессель сделал единственный правильный вывод: Сириус – это двойная система и мы видим только одного из её членов. Спутник же его слишком слаб и потому с Земли невидим. Почему Бесселю удалось сделать такой вывод не имея никаких фактов, кроме странного движения Сириуса? Потому что он знал физику и был уверен в справедливости законов Ньютона.

В 1863 году американский астроном Алван Кларк, испытывая новый объектив для телескопа, заметил около Сириуса слабую звездочку. Провели наблюдения, и выяснилось, что звездочка и Сириус обращаются около общего для них центра масс 1 раз за 50 лет. Так была открыта вторая звезда из пары – Сириус B. Теория Бесселя блестяще подтвердилась.

В 1924 году Уолтеру Адамсу удалось получить спектр Сириуса В, и тогда обнаружилось, что температура на поверхности этой слабенькой звездочки вдвое выше, чем температура поверхности нашего Солнца. И это было очень удивительно.

Что же такого удивительного было в спектре Сириуса B? Сами посудите:

Количество энергии, излучаемой звездой, пропорционально четвертой степени температуры и квадрату радиуса звезды.

И если бы Сириус В по размерам был подобен Солнцу, то должен был излучать в 16 раз больше, чем наше дневное светило. То есть быть такой яркой звездой, что его должно было хорошо быть видно с Земли даже без телескопа. А в реальности эта звезда едва видна даже в телескоп!

Значит… Сириус В должен иметь значительно меньшие размеры, относительно Солнца. Какого же размер должна быть звезда, с температурой и светимостью Сириуса B? Оказалось, что её радиус его должен составлять около 10000 километров – чуть больше, чем радиус Земли!

Факт легко подтверждался расчетами, однако поверить в него было сложно. Артур Стэнли Эддингтон писал в книге “Звезды и атомы”, опубликованной в 1927 году:

“Сообщение спутника Сириуса после его расшифровки гласило: “Я состою из вещества, плотность которого в 3000 раз выше, чем все, с чем вам когда-нибудь приходилось иметь дело; тонна моего вещества – это маленький кусочек, который умещается в спичечной коробке”. Что можно сказать в ответ на такое послание? В 1914 году большинство из нас ответило так: “Полно! Не болтай глупостей!”

Сириус B принадлежал к новому типу звезд, получившему название белые карлики.

Как повлияет взрыв сверхновой на Землю

Вспышки во Вселенной происходят очень редко — примерно 1-2
раза в сто лет. Это означает, что за все время существования нашей планеты
произошло около 70 млн взрывов. Последняя вспышка наблюдалась в далеком 1608
году, и прорвать озоновый слой Земли она не смогла. Как отмечают специалисты NASA, для того, чтобы повредить
озоновый слой, сверхновая должна находиться на расстоянии 25 световых лет от
нас. Сравнительно близко от земного шара расположены только два небесных объекта:
Бетельгейзе и IK Пегаса. Обе звезды удалены от Земли на расстояние более 150
световых лет и должны взорваться, по прогнозам астрологов, в скором будущем. Однако
этот отрезок времени может составлять и несколько десятков тысяч лет.

Виды звезд в наблюдаемой Вселенной

Во Вселенной существует множество различных звезд. Большие и маленькие, горячие и холодные, заряженные и не заряженные. В этой статье мы назовем основные виды звезд, а также дадим подробную характеристику Жёлтым и Белым карликам.

  1. Жёлтый карлик. Жёлтый карлик – тип небольших звёзд главной последовательности, имеющих массу от 0,8 до 1,2 массы Солнца и температуру поверхности 5000–6000 K. Подробнее об этом типе звезд нем смотрите ниже.
  2. Красный гигант. Красный гигант – это крупная звезда красноватого или оранжевого цвета. Образование таких звезд возможно как на стадии звездообразования, так и на поздних стадиях их существования. Крупнейшие из гигантов превращаются в красных супергигантов. Звезда под названием Бетельгейзе из созвездия Орион – самый яркий пример красного супергиганта.
  3. Белый карлик. Белый карлик – это то, что остаётся от обычной звезды с массой, не превышающей 1,4 солнечной массы, после того, как она проходит стадию красного гиганта. Подробнее об этом типе звезд нем смотрите ниже.
  4. Красный карлик. Красные карлики – самые распространённые объекты звёздного типа во Вселенной. Оценка их численности варьируется в диапазоне от 70 до 90% от числа всех звёзд в галактике. Они довольно сильно отличаются от других звезд.
  5. Коричневый карлик. Коричневый карлик – субзвездные объекты (с массами в диапазоне примерно от 0,01 до 0,08 массы Солнца, или, соответственно, от 12,57 до 80,35 массы Юпитера и диаметром примерно равным диаметру Юпитера), в недрах которых, в отличие от звезд главной последовательности, не происходит реакции термоядерного синтеза c превращением водорода в гелий.
  6. Субкоричневые карлики. Субкоричневые карлики или коричневые субкарлики – холодные формирования, по массе лежащие ниже предела коричневых карликов. Масса их меньше примерно одной сотой массы Солнца или, соответственно, 12,57 массы Юпитера, нижний предел не определён. Их в большей мере принято считать планетами, хотя к окончательному заключению о том, что считать планетой, а что – субкоричневым карликом научное сообщество пока не пришло.
  7. Черный карлик. Черные карлики – остывшие и вследствие этого не излучающие в видимом диапазоне белые карлики. Представляет собой конечную стадию эволюции белых карликов. Массы черных карликов, подобно массам белых карликов, ограничиваются сверху 1,4 массами Солнца.
  8. Двойная звезда. Двойная звезда – это две гравитационно связанные звезды, обращающиеся вокруг общего центра масс.
  9. Новая звезда. Звезды, светимость которых внезапно увеличивается в 10 000 раз. Новая звезда представляет собой двойную систему, состоящую из белого карлика и звезды-компаньона, находящейся на главной последовательности. В таких системах газ со звезды постепенно перетекает на белый карлик и периодически там взрывается, вызывая вспышку светимости.
  10. Сверхновая звезда. Сверхновая звезда – это звезда, заканчивающая свою эволюцию в катастрофическом взрывном процессе. Вспышка при этом может быть на несколько порядков больше чем в случае новой звезды. Столь мощный взрыв есть следствие процессов, протекающих в звезде на последний стадии эволюции.
  11. Нейтронная звезда. Нейтронные звезды (НЗ) – это звездные образования с массами порядка 1,5 солнечных и размерами, заметно меньшими белых карликов, порядка 10-20 км в диаметре. Они состоят в основном из нейтральных субатомных частиц – нейтронов, плотно сжатых гравитационными силами. В нашей Галактике, по оценкам ученых, могут существовать от 100 млн до 1 млрд нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд.
  12. Пульсары. Пульсары – космические источники электромагнитных излучений, приходящих на Землю в виде периодических всплесков (импульсов). Согласно доминирующей астрофизической модели, пульсары представляют собой вращающиеся нейтронные звёзды с магнитным полем, которое наклонено к оси вращения. Когда Земля попадает в конус, образуемый этим излучением, то можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Некоторые нейтронные звёзды совершают до 600 оборотов в секунду.
  13. Цефеиды. Цефеиды – класс пульсирующих переменных звёзд с довольно точной зависимостью период-светимость, названный в честь звезды Дельта Цефея. Одной из наиболее известных цефеид является Полярная звезда. Приведенный перечень основных видов (типов) звезд с их краткой характеристикой, разумеется, не исчерпывает всего возможного многообразия звезд во Вселенной.

Изучение солнечной активности

Одним из ученых, который принимал участие в проекте, стал немец Тимо Рейнхольд, работающий в Институте исследования Солнечной системы им. Макса Планка. По мнению специалиста, на протяжении девяти тысяч лет для нашей звезды были характерны регулярные и повторяющиеся колебания идентичной силы. В своей работе астрономы использовали все наблюдения за желтыми карликами, которые были зафиксированы в Млечном пути. Такой подход основан на том, что исследователям крайне сложно определить уровень активности и яркости Солнца в древний период.

Таким образом команда ученых проводила сравнительный анализ поведения различных желтых карликов, которые представлены в нашей галактике. В исследовании брали участие исключительно те космические объекты, которые своими характеристиками были схожи с Солнцем. К важным критериям отбора относились температурные параметры поверхности небесного тела, возраст, состав (кроме гелия и водорода), период вращения. Последний показатель считается особенно важным, так как от него зависит степень и возможности магнитного поля звезды. Напомню, что магнитное поле желтого карлика – движущая сила, которая ответственна за активность, колебания энергетических излучений.

Тимо Рейнхольд обратил внимание, что перечень звезд с информацией о периоде их вращения был составлен всего несколько лет назад. Такие данные основаны на работе космического телескопа «Кеплер», который был направлен в Космос американской космологической организацией НАСА

Благодаря его работе в 2009-2013 годах астрономы смогли изучить колебания яркости порядка 150 000 звезд, расположенных на экваторе собственного жизненного цикла.

Команда ученых для своего исследования отобрала исключительно те космические объекты, чей период вращения приблизительно равен двадцати-тридцати земным дням. Необходимо сделать уточнение, что Солнцу, чтобы сделать один оборот, необходимо 24,5 земных дня. Благодаря такому критерию в список для изучения попали только триста шестьдесят девять звезд, которые схожи с нашим Солнцем и другими фундаментальными параметрами.

Благодаря точному анализу изменения свечения таких звезд удалось определить, что солнечное излучение в период между активными и неактивными фазами в среднем менялось в пределах 0,07%. При этом идентичные параметры других звезд демонстрировали более существенные изменения. Ученые, работающие над проектом, отметили, что очень удивлены такому спокойному поведению Солнца в сравнении с другими аналогичными космическими объектами.

Астрономы также в научной работе уделили время на изучение около 2,5 тысячи звезд, период вращения которых не удалось определить космическому телескопу «Кеплер». В результате специалисты заметили уникальную закономерность: у этих небесных тел яркость менялась в несколько раз меньше, чем у звезд из списка «Kepler». Исследователи считают, что вполне возможно существуют еще и другие критерии, до сих пор не изученные человечеством, которые отличают объекты с известным и неизвестным периодом вращения.

Магнитное поле

Солнечная плазма обладает очень высокой электропроводностью. Соответственно в ней возникает электрический ток и, как следствие, магнитное поле. Солнце имеет общее магнитное поле и локальные магнитные поля. Общее магнитное поле меняет свою полярность через каждые 22 года. Зависит этот процесс от солнечной активности. Когда активность в минимуме, напряжённость на полюсах максимальная. Солнечная активность растёт, напряжённость поля уменьшается.

Локальные магнитные поля имеют большую напряжённость и меньшую регулярность при небольшой площади по-сравнению с общим полем. Если же площадь обширная, то напряжённость маленькая. Самые сильные магнитные поля наблюдаются в солнечных пятнах. Особенно это ощутимо, когда полярность локального поля совпадает по направлению с полярностью общего поля. В целом, эти поля неустойчивые и живут на протяжении всего лишь нескольких оборотов Солнца.


Тёмные пятна на Солнце

Эволюция

Гелиевая вспышка и сброс внешних оболочек красным гигантом продвигает звезду по диаграмме Герцшпрунга-Рассела, обуславливая его превалирующий химический состав. Жизненный цикл белого карлика, после этого, остается стабилен до самого своего остывания, когда звезда теряет свою светимость и становится невидимой, входя в стадию так называемого «черного карлика», — конечный результат эволюции, хотя в современной литературе этот термин используется все реже.

Перетекание вещества со звезды на белый карлик, который из за низкой светимости не виден

Присутствие рядом звездных компаньонов продляет их жизнь из-за падения вещества на поверхность через формирование аккреционного диска. Особенности аккреции вещества в парных системах могут приводить к накоплению вещества на поверхности белых карликов, что в результате приводит к взрыву новой или сверхновой звезды (в случае особо массивных) типа Ia.

Взрыв сверхновой в представлении художника

В случае если в системе «белый карлик – красный карлик» аккреция нестационарна, результатом может быть своеобразный взрыв белого карлика (например U Gem (UG)) или же новоподобных переменных звезд, взрыв которых носит катастрофический характер.

Остаток сверхновой SN 1006 — представляет собой взорвавшейся белый карлик, который находился в двойной системе. Он постепенно захватывал вещество звезды-компаньона и возрастающая масса спровоцировала термоядерный взрыв, который разорвал карлика

Положение на диаграмме Герцшпрунга-Рассела

Положение белых карликов на диаграмме Герцшпрунга-Рассела

На диаграмме они занимают левую нижнюю часть, принадлежа ветви звезд, покинувших главную последовательность из состояния красных гигантов.

Здесь находится область горячих звезд с низкой светимостью, которая является второй по численности среди звезд наблюдаемой Вселенной.

Может ли коричневый карлик “родить” пригодную для жизни планету?

Кроме прочего, учеными была изучена также и потенциальная обитаемость для планет, вращающихся вокруг коричневых карликов. Компьютерные модели показывают очень строгие условия для обитаемости подобных планет, поскольку обитаемая зона является узкой и уменьшается со временем из-за охлаждения коричневого карлика. Орбиты обитаемых планет должны обладать очень низким эксцентриситетом, чтобы избежать сильного приливного нагрева, который способен спровоцировать парниковый эффект, делающий планеты непригодными для жизни.

Поскольку коричневые карлики намного тусклее Солнца, планета земной массы должна была бы иметь иметь орбиту гораздо ближе к родной “звезде”, чтобы получить столько же тепла, сколько Земля получает от Солнца. Гипотетические обитаемые планеты вокруг коричневого карлика, вероятно, имеют орбитальный период не более, чем несколько земных дней.

Обитаемая зона коричневого карлика представляет собой область пространства вокруг коричневого карлика, где температура не слишком высокая и не слишком низкая для того, чтобы жидкая вода существовала на поверхности планеты земной массы. Так как коричневый карлик остывает и тускнеет с течением времени, его обитаемая зона будет аналогично сжиматься внутрь.

Планета вокруг коричневого карлика может изначально быть слишком горячей, чтобы поддерживать жизнь. Но по мере того как обитаемая зона будет сжиматься вместе с охлаждением коричневого карлика, планета впоследствии окажется в обитаемой зоне, где температура будет подходящей. По мере того, как обитаемая зона продолжит сокращаться, планета будет в конечном итоге смещаться к внешнему краю и выйдет из обитаемой зоны, когда температура станет слишком холодной для жизни на поверхности.

Развитие простейшей или даже сложной жизни на планете земной массы, вращающейся вокруг коричневого карлика, во многом зависит от того количества времени, которое планета проведёт в пределах обитаемой зоны. Для сравнения: на Земле для появления простейшей жизни потребовалось не менее 0,5 миллиарда лет, в то время как появление сложной многоклеточной жизни, возможно, заняло примерно 3 миллиарда лет.

В результате планета должна достаточно долго находиться в сжимающейся обитаемой зоне коричневого карлика, чтобы простейшая жизнь или даже продвинутые формы жизни успели развиться. Примерно рассчитано, что планета на близкой орбите вокруг коричневого карлика массой в 0,07 солнечной, вполне может находиться в пределах комфортной обитаемой зоны до 10 миллиардов лет.

Само-собой, продолжительность периода обитаемости значительно уменьшается для коричневых карликов меньшей массы. Например, планета вокруг коричневого карлика с массой в 0,04 солнечной, может оставаться пригодной для жизни на срок не более 4-х миллиардов лет.

Почему светит Солнце?

Солнце имеет огромную массу (более 99 % от массы всей Солнечной системы) и содержит в своем составе свыше 73 % водорода. На солнечной поверхности постоянно происходят термоядерные реакции, в результате которых из водорода выделяется гелий.

Ранее ученые полагали, что звезда светит из-за сгорания элементов, входящих в ее состав, но не так давно им удалось доказать, что именно благодаря термоядерным реакциям звезда поддерживает свою температуру и излучает колоссальное количество энергии.

Солнечное излучение является главным источником жизни на Земле. Без него на нашей планете не было бы ни растений, ни животных, ни самих людей. И хотя расстояние между Землей и Солнцем составляет почти 150 миллионов километров, за счет высокой температуры и яркости солнечные лучи с легкостью преодолевают этот промежуток.
При прохождении через атмосферу они теряют около одной трети энергии, но того, что доходит до поверхности, вполне достаточно для существования всего живого.

Сверхновая звезда

Вспышка сверхновой

Второе название данного явления называется взрывом
сверхновой. Оно представляет собой конец эволюции некоторых звезд.  В результате вспышки увеличивается яркость
светила на 4—8 порядков, а потом она медленно затухает. Стоит отметить, что
химическая эволюция Галактики протекает благодаря тем самым взрывам сверхновой,
во время которых происходит выброс тяжелых элементов. Из этих остатков
формируются протозвезды с планетарными туманностями, а из этих туманностей — новые
звезды и планеты. По некоторым сведениям, так и произошло формирование Земли.

Астрономы отмечают, что не заметить взрыв сверхновой просто
невозможно. Вспышка настолько сильна, что затмевает сияние других звезд на
небе.

В ядре звезды происходит термоядерная реакция: водород
превращается в гелий и более тяжелые элементы с выделением большого количества
энергии. Когда водород в центре заканчивается, к нему начинают обрушиваться
верхние слои гелия. Затем вещество взрывается и сжимает ядро, унося при этом
верхние слои ударной волной. Это и есть взрыв.

Ученые считают, что в течение нескольких тысячелетий
произойдет вспышка сверхновой. В список вошли такие звезды, как IK Пегаса, Антарес
и Бетельгейзе.

Виды белых карликов

Некоторые белые карлики в шаровом скоплении NGC 6397, снимок Хаббла

Спектрально их разделяют по двум группам. Излучение белого карлика делят на наиболее распространенный «водородный» спектральный класс DA (до 80 % от общего количества), в котором отсутствуют спектральные линии гелия, и более редкий «гелиевый белый карлик» тип DB, в спектрах звезд которого отсутствуют водородные линии.

Американский астроном Ико Ибен предложил различные сценарии их происхождения: в виду того, что горение гелия в красных гигантах неустойчиво, периодически развивается слоевая гелиевая вспышка.  Он удачно предположил механизм сброса оболочки в разные стадии развития гелиевой вспышки – на ее пике и в период между двумя вспышками. Образование его зависит от механизма сброса оболочки соответственно.

Белые карлики

Белый карлик

Данные космические образования лишены источников термоядерной
энергии, они излучают слабый свет. Имеют приблизительно такую же массу, как Солнце,
а радиус — как планета Земля. В целом к белым карликам относится 3-10% всех
звезд. Постепенно данные виды звезд остывают и краснеют.

Одними из первых открытых звезд данного вида стали 40
Эридана B, Процион В и Сириус В.

Во время наблюдения за Сириусом была замечена маленькая
звездочка, что свидетельствовало о наличии звезды-спутника. Впоследствии объекту
дали название Сириус В. Та же история повторилась и с Порционом, который отклонялся
от прямолинейной траектории движения. Эти открытия послужили толчком для образования
нового класса звезд — белых карликов.

Как же образовываются белые карлики? Когда в центре звезды
выгорает весь водород, ее ядро сжимается, а внешние слои сильно расширяются.
Постепенно она тускнеет и превращается в красного гиганта, который затем сбрасывает
свою оболочку

Всего существует два класса белых звезд. Самый часто
встречающийся — «водородный» спектральный класс DA и «гелиевый белый карлик»
типа DB.

Помимо вышеперечисленных видов светил, существуют также
голубые, черные, коричневые и субкоричневые карлики.   

Классы цефеид

Существует два главных подкласса цефеид: классические и цефеиды II типа. Первые – население I (богатые на металл), превосходящие солнечную массу в 4-20 раз и в 100000 раз ярче. Они регулярно пульсируют в течение нескольких дней или месяцев.

Это желтые яркие гиганты или сверхгиганты (F6-K2), чей радиус меняется в миллионы км во время пульсации. Классические применяют для вычисления дистанций к галактикам в пределах Местной Группы и за ее чертой.

Цефеиды II типа – бедные на металл. Период пульсации охватывает 1-50 дней. Их возраст составляет 10 миллиардов лет и достигают половины солнечной массы. Они также делятся на BL Геракла (1-4 дней), W Девы (10-20 дней), RV Тельца (более 20 дней). Ими пользуются, если нужно вычислить дистанцию к галактическому центру, шаровым скоплениям и соседним галактикам.

Есть также аномальные цефеиды. Их периодичность составляет 2 дня (как RR Лиры), но они светятся намного ярче. Превосходят цефеиды II по массе, но возраст остается неизвестным. Есть небольшой процент переменных, которые пульсируют одновременно в двух режимах – «цефеиды с двойным режимом».

Возникновение Солнца

Каких-то 5 млрд. лет назад на том месте, где мы сейчас находимся, ничего не было. Отсутствовала Земля, другие планеты, не было и Солнца. Всё пространство заполняли молекулы водорода. Они образовывали огромную туманность и свободно перемещались в пространстве. Но ничто не вечно под Луной (в данном случае под центром галактики). Под действием сил гравитации водородное облако стало постепенно закручиваться в воронку и вращаться вокруг своей оси.

Почему это произошло? Во всём виноваты силы гравитации. На той же Земле, к примеру, благодаря им, образуются мощные смерчи и вихри. Весь космос живёт по одним и тем же законам. Только смерчи в безвоздушном пространстве имеют значительно большие размеры, а существуют многие миллионы лет. Подобный смерч возник и 5 млрд. лет назад. Именно он и послужил причиной появления жёлтого карлика.

Огромная газовая воронка вращалась всё быстрее, а в её центре росла плотность водорода. Соответственно повышалась температура. Наконец она достигла критической величины и спровоцировала начало термоядерной реакции. Так зародилось Солнце. Полностью сформировалось оно 4,6 млрд. лет тому назад. То есть на данный момент жёлтый карлик уже прожил половину своей жизни. С каждым новым прожитым миллиардом лет он становится всё ярче и ярче. Какое же у него внутреннее строение?

Что представляют собой белые карлики

В белых карликах давление вырожденного газа как раз таково, что уравновешивает силу тяжести. Плотность вещества в белых карликах (1 т/см ) достаточна для создания нужного давления. Наконец, размеры звезд (10 000 км) достаточны для создания нужной плотности. Все прекрасно сходилось!

Конечно же, температура белых карликов, наблюдаемых в телескопы, не равна абсолютному нулю. Тот же Сириус B нагрет до 10 тысяч градусов. Но что значит тепловая энергия, соответствующая этой температуре, по сравнению с энергией вырождения? Капля в море… Поэтому белые карлики хорошо описываются уравнениями, выведенными для абсолютно холодного вещества.

И еще один очень важный вывод сделал Чандрасекар. Дело в том, что давление вырожденного газа из протонов и электронов тоже не может расти безгранично. Наступит момент, когда и оно не сможет противостоять тяжести. Для этого нужно, чтобы тяжесть превысила некоторый предел. А для этого, в свою очередь, нужно, чтобы масса звезды была больше некоторого критического значения – ведь именно масса звезды и создает тяжесть!

Вывод был прост: должна существовать предельная масса белого карлика. Чандрасекар рассчитал величину этой предельной массы, известной сейчас как Предел Чандрасекара.

Она оказалась равной 1,4 массы Солнца в том случае, если белый карлик состоит из гелия. Работа Чандрасекара произвела огромное впечатление – она объясняла существование наблюдаемого класса звезд, она определяла этим звездам место в общем ряду. Белые карлики, следовало из работы Чандрасекара,- это звезды после исчерпания источников энергии. Другими словами: белые карлики – конечная стадия жизни звезд.

Далеко не все звезды после «смерти» превращаются в белые карлики, более массивные звезды могут образовать нейтронную звезду или даже черную дыру.

Конечно, забегая вперед, важно отметить: все это справделиво, но далеко не для всех типов звезд! Некоторые из них настолько велики, что просто физически не могут сжаться в белый карлик, оставляя после себя нейтронную звезду или даже черную дыру. Однако эти открытия были сделаны несколько позднее

Для сайта starcatalog.ru, компиляция из открытых источников сети интернет, и книги  Павла Рафаэловича Амнуэля, “Загадки для знатоков”

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector